Future Prospects for Computer-assisted Mathematics (CMS Notes 12/05)

What is HIGH PERFORMANCE MATHEMATICS?

 Jonathan Borwein, fRSC www.cs.dal.ca/~jborwein\square Canada Research Chair in Collaborative Technology
"intuition comes to us much earlier and with much less outside influence than formal arguments which we cannot really understand unless we have reached a relatively high level of logical experience and sophistication."

Atlantic Computational Excellence Network
EALHOUSIE
$\frac{\text { UN I V E R S ITY }}{\text { Inspiring Minds }}$

What is HIGH PERFORMANCE MATHEMATICS?

Some of my examples will be very high-tech but most of the benefits can be had via

VOIPISKYPE and a WEBCAM

MAPLE or MATLAB or ...
A REASONABLE LAPTOP
A SPIRIT OF ADVENTURE
in almost all areas of mathematics

ABSTRACT

"If mathematics describes an objective world just like physics, there is no reason why inductive methods should not be applied in mathematics just the same as in physics." (Kurt Godel,1951)

We shall explore various tools available for deciding what to believe in mathematics, and, using accessible often visual examples, illustrate the rich experimental tool-box mathematicians now have access to.

To explain how mathematicians may use High Performance Computation (HPC) and what we have in common with other computational scientists I shall mention various HPM problems including:

$$
\cos (2 x) \prod_{n=1}^{\infty} \cos \left(\frac{x}{n}\right) d x \stackrel{?}{=} \frac{\pi}{8}
$$

which is both numerically and symbolically quite challenging
and is answered at the end

Outline. What is HIGH PERFORMANCE MATHEMATICS?

1a. Communication, Collaboration and Computation.
1b. Visual Data Mining in Mathematics.
\checkmark Fractals, Polynomials, Continued Fractions s_{28065}^{*}
\checkmark Pseudospectra and Code Optimization
2. High Precision Mathematics.
3. Integer Relation Methods.

> The talk ends when I do
\checkmark Chaos, Zeta* and the Riemann Hypothesis
\checkmark Hex-Pi and Normality

Drive
4. Inverse Symbolic Computation.
\checkmark A problem of Knuth*, $\pi / 8$, Extreme Quadrature
5. Demos and Conclusion.

Moore's 1965 Law continues:

Projected Performance Development

This picture is worth 109,000 ENIACs

The number of ENIACS needed to store the 20Mb TIF file the Smithsonian sold me

The past

NERSC's 6000 cpu Seaborg in 2004 (10Tflops/sec)

- we need new software paradigms for 'bigga-scale' hardware

IBM BlueGene/L system at LLNL

Supercomputer doubles own record

The Blue Gene/L supercomputer has broken its own record to achieve more than double the number of calculations it can do a second.

It reached 280.6 teraflops that is 280.6 trillion calculations a second.

Blue Gene/L is the fastest computer in the world
2.8/5.6 GF/s 4 MB
5.6/11.2 GF/s 0.5 GB DDR

The future

$$
2^{17} \text { cpu's }
$$

Oct 2005 It has now run Linpack benchmark at over 280 Tflop Isec (4 x Canadian-REN)

"It says it's sick of doing things like inventories and payrolls, and it wants to make some breakthroughs in astrophysics."

EXPERIMENTS in Mathematics

Jonathan M. Borwalh David H. Bailey Roland Grgensohn
Produed with the assabtangia of Masen 4

The reader who wanks to get an introduction to this excitifi approach to doing mathematics can do no better than the -Notices of

I do not think that I have had the good forture to read two entertaining and informative mathematics texts.
-Australian Mathematical Societs
This Experiments in Mathematics CD contains the full text of b matics by Experiment: Plausible Reasoning th the 21st Century : mentation in Mathematics: Computational Pathes to Discovery i searchable form. The CD includes several "smart" enhancemer

- Hyperlinks for all cross references
- Hyperlinks for all Internet URLs
- Hyperlinks to bibliographic references
- Enhanced search function, which assists one with a search particular mathematical formula or expression.

These enhancements significantly improve the usability of thes reader's experience with the material.

A K Peters, Ltd.

I do not think that I have had the good fortune to read two more entertaining and informative mathematics texts."

-Gazette of the Australian Mathematical Society
Experimental Mathematics in Action
David H. Bailey, Jonathan M. Borwein, Neil Calkin, Roland Girgensohn, Russell Luke, Victor Moll

The emerging field of experimental mathematics has expanded to encompass a wide range of studies, all unified by the aggressive utilization of modern computer technology in mathematical research. This volume presents a number of case studies of experimental mathematics in action, together with some high level perspectives.

Specific case studies include:
-- analytic evaluation of integrals by means of symbolic and numeric computing techniques
-- evaluation of Apery-like summations
-- finding dependencies among high-dimension vectors (with applications to factoring large integers)
.- inverse scattering (reconstruction of physical objects based on electromagnetic or acoustic scattering)
-- investigation of continuous but nowhere differentiable functions.
In addition to these case studies, the book includes some background on the computational techniques used in these analyses.

September 2006; ISBN 1-56881-271-X; Hardcover; Approx. 200 pp.; \$39.00

Mathematics by Experiment: Plausible Reasoning in the 21st Century Jonathan Borwein, David Bailey

". . . experimental mathematics is here to stay. The reader who wants to get an introduction to this exciting approach to doing mathematics can do no better than [this book]."

- Notices of the AMS

ISBN 1-56881-211-6; Hardcover; 298 pp.; \$45.00

Experimentation in Mathematics: Computational Paths to Discovery Jonathan Borwein, David Bailey, Roland Girgensohn
"These are such fun books to read! Actually, calling them books does not do them justice. They have the liveliness and feel of great Web sites, with their bite-size fascinating factoids and their many humanand math-interest stories and other gems. But do not be fooled by the lighthearted, immensely entertaining style. You are going to learn more math (experimental or otherwise) than you ever did from any two single volumes. Not only that, you will learn by osmosis how to become an experimental mathematician."

- American Scientist

Ehperimentation manthematics

Experimental Mathodology

1. Gaining insight and intuition
2. Discovering new relationships
3. Visualizing math principles
4. Testing and especially falsifying conjectures
5. Exploring a possible result to see if it merits formal proof
6. Suggesting approaches for formal proof
7. Computing replacing lengthy hand derivations
8. Confirming analytically derived results

1 PARTIAL FRACTIONS and CONVEXITY

In a coupon collection thesis at SFU

- We consider a network objective function p_{n} given by

$$
p_{n}(\vec{q})=\sum_{\sigma \in S_{n}}\left(\prod_{i=1}^{n} \frac{q_{\sigma(i)}}{\sum_{j=i}^{n} q_{\sigma(j)}}\right)\left(\sum_{i=1}^{n} \frac{1}{\sum_{j=i}^{n} q_{\sigma(j)}}\right)
$$

summed over all n ! permutations; so a typical term is

$$
\left(\prod_{i=1}^{n} \frac{q_{i}}{\sum_{j=i}^{n} q_{j}}\right)\left(\sum_{i=1}^{n} \frac{1}{\sum_{j=i}^{n} q_{j}}\right) .
$$

This looked pretty ugly

 but lan Affleck hoped p_{n} was convex !\diamond For $n=3$ this is
6 TERMS LIKE

$$
\begin{aligned}
& q_{1} q_{2} q_{3}\left(\frac{1}{q_{1}+q_{2}+q_{3}}\right)\left(\frac{1}{q_{2}+q_{3}}\right)\left(\frac{1}{q_{3}}\right) \\
& \times\left(\frac{1}{q_{1}+q_{2}+q_{3}}+\frac{1}{q_{2}+q_{3}}+\frac{1}{q_{3}}\right) .
\end{aligned}
$$

- We wish to show p_{n} is convex on the positive orthant. First we try to simplify the expression for p_{n}.

COMPUTERS DO SOME THINGS BETTER THAN US

- The partial fraction decomposition gives:

$$
\begin{aligned}
p_{1}(x) & =\frac{1}{x} \\
p_{2}\left(x_{1}, x_{2}\right) & =\frac{1}{x_{1}}+\frac{1}{x_{2}}-\frac{1}{x_{1}+x_{2}}, \\
p_{3}\left(x_{1}, x_{2}, x_{3}\right) & =\frac{1}{x_{1}}+\frac{1}{x_{2}}+\frac{1}{x_{3}} \\
& -\frac{1}{x_{1}+x_{2}}-\frac{1}{x_{2}+x_{3}}-\frac{1}{x_{1}+x_{3}} \\
& +\frac{1}{x_{1}+x_{2}+x_{3}}
\end{aligned}
$$

So we predict the 'same' for $N=4$ and CHECK SYMBOLICALLY

CONJECTURE. For each $N \in \mathbb{N}$

$$
p_{N}\left(x_{1}, \ldots, x_{N}\right):=\int_{0}^{1}\left(1-\prod_{i=1}^{N}\left(1-t^{x_{i}}\right)\right) \frac{d t}{t}
$$

is convex, indeed 1 /concave. Non-convex integrand

- Check $N<5$ via large symbolic Hessian PROOF. A year later, joint expectations gave:

$$
p_{N}(x)=\int_{\mathbb{R}_{+}^{n}} e^{-\left(y_{1}+\cdots+y_{n}\right)} \max \left(\frac{y_{1}}{x_{1}}, \ldots, \frac{y_{n}}{x_{n}}\right) d y
$$

[See SIAM Electronic Problems and Solutions.]

True, but why?

The first series below was proven by Ramanujan. The next two were found \& proven by Computer (Wilf-Zeilberger).
The candidates:

$$
\begin{gathered}
\frac{16}{\pi}=\sum_{n=0}^{\infty} r_{3}(n)(42 n+5)\left(\frac{1}{4^{3}}\right)^{n} \\
\frac{8}{\pi^{2}}=\sum_{n=0}^{\infty} r_{5}(n)\left(20 n^{2}+8 n+1\right)\left(\frac{-1}{4}\right)^{n} \\
\frac{128}{\pi^{2}}=\sum_{n=0}^{\infty} r_{5}(n)\left(820 n^{2}+180 n+13\right)\left(\frac{-1}{4^{5}}\right)^{n}
\end{gathered}
$$

1887-1920
$\frac{32}{\pi^{3}}=\sum_{n=0}^{\infty} r_{7}(n)\left(168 n^{3}+76 n^{2}+14 n+1\right)\left(\frac{1}{4^{3}}\right)^{n}$

Here, in terms of factorials and rising factorials:
The $4^{\text {th }}$ is only true

$$
r_{N}(n):=\frac{\binom{2 n}{n}^{N}}{4^{n N}}=\left(\frac{(1 / 2)_{n}}{n!}\right)^{N} \cdot \quad r_{N}(n) \sim_{n} \frac{1}{n^{N / 2}}
$$

Grand Challenges in Mathematics (CISE 2000)

are few and far between

- Four Colour Theorem $(1976,1997)$
- Kepler's problem (Hales, 2004-12)

On an upcoming slide

- Nonexistence of Projective Plane of Order 10
- 10²+10+1 lines and points on each other ($\mathrm{n}+1$ fold)
- 2000 Cray hrs in 1990
- next similar case:18 needs1012 hours?
- or a Quantum Computer

Fermat's Last Theorem (Wiles 1993, 1994)

- By contrast, any counterexample was too big to find (1985)
$x^{N}+y^{N}=z^{N}, N>2$ has only trivial integer solutions

Cultural Maps in Mathematics

"Mathematicians are a kind of Frenchmen:

whatever you say to them they
translate into their own language, and right away it is something entirely different." (Johann Wolfgang von Goethe) Maximen und Reflexionen, no. 1279

- Kepler's conjecture the densest way to stack spheres is in a pyramid
- oldest problem in discrete geometry?
- most interesting recent example of computer assisted proof
- published in Annals of Mathematics with an "only 99\% checked" disclaimer
- Many varied reactions. In Math, Computers Don't Lie. Or Do They? (NYT, 6/4/04)
- Famous earlier examples: Four Color

Theorem and Non-existence of a Projective Plane of Order 10.

- the three raise quite distinct questions both real and specious
- as does status of classification of Finite Simple Groups

Formal Proof theory (code validation) has received an unexpected boost: automated proofs may now exist of the Four Color Theorem and Prime Number Theorem

- COQ: When is a proof a proof ? Economist, April 2005

East meets West: Collaboration goes National

Welcome to D-DRIVE whose mandate is to study and develop resources specific to distributed research in the sciences with first client groups being the following communities

- High Performance Computing
- Mathematical and Computational Science Research
- Science Outreach
- Research
- Education/TV

AARMS

Dalhousie Distributed Research Institute and Virtual Environment

Coast to Coast Seminar Series

Tuesdays 3:30-4:30 pm Atlantic Time http://projects.cs.dal.ca/ddrive/

Lead partners:
Dalhousie D-Drive - Halifax Nova Scotia

IRMACS - Burnaby, British Columbia

Other Participants so far:

University of British Columbia, University of Alberta, University of Alberta University of Saskatchewan, Lethbridge University,

Acadia University, St Francis Xavier University, University of Western Michigan, MathResources Inc, University of North Carolina

The Experience

Fully Interactive multi-way audio and visual Given good bandwidth audio is much harder
The closest thing to being in the same room

Shared Desktop for viewing presentations or sharing software

Jonathan Borwein, Dalhousie University

High Quality Presentations

Mathematical Visualization
Uwe Glaesser, Simon Fraser University Semantic Blueprints of Discrete Dynamic Systems

Peter Borwein, IRMACS
The Riemann Hypothesis

Arvind Gupta, MITACS

The Protein Folding Problem
Przemyslaw Prusinkiewicz, University of Calgary Computational Biology of Plants

Karl Dilcher, Dalhousie University
Fermat Numbers, Wieferich and Wilson Primes

Dalhousie Distributed Research Institute and Virtual Environment

The Technology

High Bandwidth Connections (CA*net)

$+$
PC Workstations
Audio/Video
Equipment
$+$
Open Source Software

Personal Nodes (1-4 people)

Cost: Less than \$10,000 (CA)

Small Group
Projected Environment (2-10 people)

Cost: \$25,000 - \$100,000 (CA)

Institutional Requirements (Scalable Investment)

Meeting Room Interactive Environment (2-20 people)

Cost: \$150,000 (CA)

Visualization Auditorium

Cost: \$500,000+ (CA)

AMS Notices Cover Article

I shall now show a variety of uses of high performance computing and communicating as part of

Experimental Inductive Mathematics

Our web site:

www.experimentalmath.info

contains all links and references

"Elsewhere Kronecker said ``In mathematics, I recognize true scientific value only in concrete mathematical truths, or to put it more pointedly, only in mathematical formulas." ... I would rather say "computations" than "formulas", but my view is essentially the same."

Harold Edwards, Essays in Constructive Mathematics, 2004

Caveman Geometry

"What I appreciate even more than its remarkable speed and accuracy are the words of understanding and compassion I get from it."

Outline. What is HIGH PERFORMANCE MATHEMATICS?

1b. Visual Data Mining in Mathematics.
\checkmark Fractals, Polynomials, Continued Fractions*
\checkmark Pseudospectra and Code Optimization
2. High Precision Mathematics.
3. Integer Relation Methods.
\checkmark Chaos, Zeta* and the Riemann Hypothesis
\checkmark Hex-Pi and Normality
4. Inverse Symbolic Computation.

Drive
\checkmark A problem of Knuth*, $\pi / 8$, Extreme Quadrature
5. Demos and Conclusion.

COXETER'S (1927) Kaleidescope Visualization

Interactive Proofs

The Perko Pair 10_{161} and 10_{162}

 are two adjacent 10-crossing knots (1900)

- first shown to be the same by Ken Perko in 1974
- and beautifully made dynamic in KnotPlot (open source)

Isuclrotis Pegras A merging of 19 ${ }^{\text {th }}$ and $21^{\text {st }}$ Centuries

I N DRA'S

PEARLS The Vision of Felix Klein

David Mumford, Caroline Series, David Wright

2002: http://klein.math.okstate.edu/IndrasPearls/

CINDERELLA's

 dynamic geometry
Thentencive softive whaterello bent $\stackrel{n}{5}=$ $=-2$

 (6)FOUR DEMOS combining inversion, reflection and dilation

1. Indraspearls
2. Apollonius *
3. Hyperbolicity
4. Gasket
www.cinderella.de
 zeros for all polynomials in powers of x with coefficients 1 and -1 to degree 18
Coloration is by sensitivity of polynomials to slight variation around the values of the zeros. The color scale represents a normalized sensitivity to the range of values; red is insensitive to violet which is strongly sensitive.

- All zeros are pictured (at 3600 dpi)
- Figure 1b is colored by their local density
- Figure 1d shows sensitivity relative to the x^{9} term
- The white and orange striations are not understood

A wide variety of patterns and features become visible, leading researchers to totally unexpected mathematical results

[^0]

Roots in the most stable colouring

Ramanujan's
Arithmetic-Geometric Continued fraction (CF)

$$
R_{\eta}(a, b)=\frac{a}{\eta+\frac{b^{2}}{\eta+\frac{4 a^{2}}{\eta+\frac{9 b^{2}}{\eta+\ldots}}}}
$$

For $a, b>0$ the CF satisfies a lovely symmetrization

$$
\mathcal{R}_{\eta}\left(\frac{a+b}{2}, \sqrt{a b}\right)=\frac{\mathcal{R}_{\eta}(a, b)+\mathcal{R}_{\eta}(b, a)}{2}
$$

Computing directly waș,tóo hard; even 4 places of $\quad \mathcal{R}_{1}(1,1)=\log 2$

We wished to knowv for which a/b in C this all held

A scatterplot 'revealed a precise cardioid where $r=a / b$.
Which discovery it remained to prove?

$$
\left|\frac{a+b}{2}\right| \geq \sqrt{|a b|}
$$

Ramanujan's

Arithmetic-Geometric Continued fraction

1. The Blackbox

Six morths later we had a beautiful proof using genuinely new dynamical results. Starting from the dynamical system $t_{0}:=t_{1}:=1$:
2. Seeing
convergence

$$
t_{n} \Rightarrow \frac{1}{n} t_{n-1}+\omega_{n-1}\left(1-\frac{1}{n}\right) t_{n-2},
$$

where $\omega_{n}=a^{2}, b^{2}$ for n even, odd respectivelyor is much more general.*

Mathematics and the aesthetic Modern approaches to an ancient affinity (CMS-Springer, 2005)

Why should I refuse a good dinner simply because I don't understand the digestive processes involved?

Oliver Heaviside
(1850-1925)
when criticized for his daring use of operators before they could be justified formally

The pseudo spectrum of A: for $\varepsilon>0$

$$
\sigma_{\varepsilon}(A)=\{\lambda: \inf \|A x-\lambda x\| \leq \varepsilon\}
$$

http://web.comlab.ox.ac.uk/projects/pseudospectra

An Early Use of Pseudospectra (Landau, 1977)

An infinite dimensional integral equation in laser theory
\checkmark discretized to a matrix of dimension 600 \checkmark projected onto a well chosen invariant subspace of dimension 109

Outline. What is HIGH PERFORMANCE MATHEMATICS?

1. Visual Data Mining in Mathematics.
\checkmark Fractals, Polynomials, Continued Fractions* \checkmark Pseudospectra and Code Optimization
2. High Precision Mathematics.
3. Integer Relation Methods.
\checkmark Chaos, Zeta* and the Riemann Hypothesis
\checkmark Hex-Pi and Normality
4. Inverse Symbolic Computation.

Drive
\checkmark A problem of Knuth*, $\pi / 8$, Extreme Quadrature
5. Demos and Conclusion.

A WARMJUP Computational Proof

Suppose we know that $1<\mathrm{N}<10$ and that N is an integer

- computing \mathbf{N} to 1 significant place with a certificate will prove the value of N . Euclid's method is basic to such ideas.

Likewise, suppose we know α is algebraic of degree d and length λ (coefficient sum in absolute value)
If P is polynomial of degree D \& length L EITHER $P(\alpha)=0$ OR .

Example (MAA, April 2005). Prove that

$$
\int_{-\infty}^{\infty} \frac{y^{2}}{1+4 y+y^{6}-2 y^{4}-4 y^{3}+2 y^{5}+3 y^{2}} d y=\pi
$$

Proof. Purely qualitative analysis with partial fractions and arctans shows the integral is $\pi \beta$ where β is algebraic of degree much less than 100 (actually 6), length much less than $100,000,000$. With $P(x)=x-1 \quad(D=1, L=2, d=6, \lambda=$?), this means checking the identity to 100 places is plenty of PROOF. A fully symbolic Maple proof followed. QED $|\beta-1|<1 /(32 \lambda) \mapsto \beta=1$

Numeric and Symbolic Computation

Central to my work - with Dave Bailey meshed with visualization, randomized checks, many web interfaces and \checkmark Massive (serial) Symbolic Computation

- Automatic differentiation code \checkmark Integer Relation Nethods

Parallel derivative free optimization in Maple

The On-Line Encyclopedia of Integer Sequences

Other languages: Albanian Arabic Bulgarian Catalan Chinese (simplified, traditional) Croatian Czech Danish Dutch Esperanto Estonian Finnish French German Greek Hebrew Hindi Hungarian Italian Japanese Korean Polish Portuguese Romanian Russian Serbian Spanish Swedish Tagalog Thai Turkish Ukrainian Vietnamese

For information about the Encyclopedia see the Welcome page.
Looku| |Welcome \mid Francais \mid Demos \mid Index \mid Browse \mid More \mid WebCam Contribute new seq. or comment \mid Format \mid Transforms \mid Puzzles \mid Hot \mid Classics More pages \mid Superseeker \mid Maintained by N. J. A. Sloane (njas@research.att.com)
[Last modified Fri Apr 22 21:18:02 EDT 2005. Contains 105526 sequences.]

Other useful tools: Parallel Maple - Sloane's online sequence database

- Salvy and Zimmerman's generating function package 'gfun'
- Automatic identity proving: WilfZeilberger method for hypergeometric functions

Greetings from the On-Line Encyclopedia of Integer Sequences!

Matches (up to a limit of 30) found for 1236112347106235 :
[It may take a few minutes to search the whole database, depending on how many matches are found (the second and later lool are faster)]

An Exemplary Database

ID Number: x 000055 (Formerly M0791 and NO299)
URL: http://www.research.att.com/projects/OEIS?Anum= A 000055
Sequence: $1,1,1,1,2,3,6,11,23,47,106,235,551,1301,3159,7741,19320$, $48629,123867,317955,823065,2144505,5623756,14828074$, 39299897, 104636890,279793450, 751065460,2023443032, $5469566585,14830871802,40330829030,109972410221$ Number of trees with n unlabeled nodes.

Comments: Also, number of unlabeled 2 -gonal 2 -trees with n 2 -gons.
References F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 279.
N. L. Biggs et al., Graph Theory 1736-1936, oxford, 1976, p. 49.
S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. $295-316$.
D. D. Grant, The stability index of grgphs, pp. 29-52 of Combinatorial Mathematics (Proceedings 2nd Australian Conf.), Lect. Notes Math. 403, 1974.
F. Harary, Graph Theory. Addison-Wesley, Reading, MA, 1969, p. 232.
F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 58 and 244.
D. E. Knuth, Fundamental Algorithms, 3d Ed. 1997, pp. 386-88.
R. C. Read and R. J. Jilson, An Atlas of Graphs, Oxford, 1998.
J. Riordan, An Intyoduction to Combinatorial Analysis, Wiley, 1958, p. 138. Steven Fingh, Otter's Tree Enumeration Constants
E. M. Rains and N. J. A. Sloane, On Cayley's Enumeration of Alkanes (or 4-Valent Trees)
N. J. A. Sloane, Illustration of initial terms
E. J. Weisstein, Link to a section of The World of Mathematics.

Index entries for sequences related to trees
Index entries for "core" sequences
G. Labelle, C. Lamathe and P. Leroux, Labeled and unlabeled enumeration of k-gonal 2-tr

Fast Arithmetic (Complexity Reduction in Action)

Multiplication

■ Karatsuba multiplication (200 digits +) or Fast Fourier Transform
(FFT)
... in ranges from 100 to 1,000,000,000,000 digits

- The other operations
via Newton's method $\quad \times, \div \sqrt{ }$.
- Elementary and special functions via Elliptic integrals and Gauss AGM

For example:

$$
\begin{aligned}
& \left(a+c \cdot 10^{N}\right) \times\left(b+d \cdot 10^{N}\right) \\
= & a b+(a d+b c) \cdot 10^{N}+c d \cdot 10^{2 N} \\
= & a b+\underbrace{\{(a+c d\}}_{\text {three multiplications }} \cdot 10^{N}+c d \cdot 10^{2 N}
\end{aligned}
$$

Karatsuba replaces one 'times' by many 'plus'

FFT multiplication of multi-billion digit numbers reduces centuries to minutes. Trillions must be done with Karatsuba!

Ising Integrals (Jan 2006)

The following integrals arise in Ising theory of mathematical physics:

$$
C_{n}=\frac{4}{n!} \int_{0}^{\infty} \cdots \int_{0}^{\infty} \frac{1}{\left(\sum_{j=1}^{n}\left(u_{j}+1 / u_{j}\right)\right)^{2}} \frac{d u_{1}}{u_{1}} \cdots \frac{d u_{n}}{u_{n}}
$$

Richard Crandall showed that this can be transformed to a 1-D integral:

$$
C_{n}=\frac{2^{n}}{n!} \int_{0}^{\infty} t K_{0}^{n}(t) d t
$$

where K_{0} is a modified Bessel function. We then computed 400-digit numerical values, from which these results were found (and proven):

$$
\begin{aligned}
C_{3} & =\mathrm{L}_{-3}(2)=\sum_{n \geq 0}\left(\frac{1}{(3 n+1)^{2}}-\frac{1}{(3 n+2)^{2}}\right) \\
C_{4} & =14 \zeta(3) \quad \begin{array}{r}
\text { - via PSLQ and the Inverse } \\
\lim _{n \rightarrow \infty} C_{n}
\end{array}=2 e^{-2 \gamma} \quad \begin{aligned}
\text { Calculator to which we now turn }
\end{aligned}
\end{aligned}
$$

"What it comes down to is our software is too hard and our hardware is too soft."

Outline. What is HIGH PERFORMANCE MATHEMATICS?

1. Visual Data Mining in Mathematics.
\checkmark Fractals, Polynomials, Continued Fractions*
\checkmark Pseudospectra and Code Optimization
2. High Precision Mathematics.
3. Integer Relation Methods.
\checkmark Chaos, Zeta and the Riemann Hypothesis
\checkmark Hex-Pi and Normality
4. Inverse Symbolic Computation.

Drive
\checkmark A problem of Knuth*, $\pi / 8$, Extreme Quadrature
5. Demos and Conclusion.

The PSLQ Integer Relation Algorithm

Let $\left(x_{n}\right)$ be a vector of real numbers. An integer relation algorithm finds integers $\left(a_{n}\right)$ such that

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=0
$$

- At the present time, the PSLQ algorithm of mathematician-sculptor Helaman Ferguson is the best-known integer relation algorithm.
- PSLQ was named one of ten "algorithms of the century" by Computing in Science and Engineering.
- High precision arithmetic software is required: at least $\mathrm{d} \times \mathrm{n}$ digits, where d is the size (in digits) of the largest of the integers a_{k}.

An Immediate Use

To see if a is algebraic of degree N, consider $\left(1, a, a^{2}, \ldots, a^{N}\right)$

Application of PSLQ: Bifurcation Points in Chaos Theory

$B_{3}=3.54409035955 \ldots$ is third bifurcation point of the logistic iteration of chaos theory:

$$
x_{n+1}=r x_{n}\left(1-x_{n}\right)
$$

i.e., B_{3} is the smallest r such that the iteration exhibits 8way periodicity instead of 4-way periodicity.
In 1990, a predecessor to PSLQ found that B_{3} is a root of the polynomial

$$
\begin{aligned}
0= & 4913+2108 t^{2}-604 t^{3}-977 t^{4}+8 t^{5}+44 t^{6}+392 t^{7} \\
& -193 t^{8}-40 t^{9}+48 t^{10}-12 t^{11}+t^{12}
\end{aligned}
$$

Recently B_{4} was identified as the root of a 256-degree polynomial by a much more challenging computation.
These results have subsequently been proven formally.

- The proofs use Groebner basis techniques
- Another useful part of the HPM toolkit

PSLQ and Zeta

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}
$$

$\begin{aligned} & \text { 1. } \text { via PSLQ to } \\ & 50,000 \text { digits }\end{aligned}=\frac{\pi^{2}}{6}, \zeta(4)=\frac{\pi^{4}}{90}, \zeta(6)=\frac{\pi^{6}}{945}$, (250 terms)

2005 Bailey, Bradley \& JMB discovered and proved - in Maple - three equivalent binomial identities

$$
\begin{aligned}
\stackrel{\mathcal{Z}(x)}{\sim} & =3 \sum_{k=1}^{\infty} \frac{1}{\binom{2 k}{k}\left(k^{2}-x^{2}\right)} \prod_{n=1}^{k-1} \frac{4 x^{2}-n^{2}}{x^{2}-n^{2}} \\
& =\sum_{k=0}^{\infty} \zeta(2 k+2) x^{2 k}=\sum_{n=1}^{\infty} \frac{1}{n^{2}-x^{2}} \\
& =\frac{1-\pi x \cot (\pi x)}{2 x^{2}}
\end{aligned}
$$

$$
3 n^{2} \sum_{k=n+1}^{2 n} \frac{\prod_{m=n+1}^{k-1} \frac{4 n^{2}-m^{2}}{n^{2}-m^{2}}}{\binom{2 k}{k}\left(k^{2}-n^{2}\right)}=\frac{1}{\binom{2 n}{n}}-\frac{1}{\binom{3 n}{n}}
$$

$$
{ }_{3} F_{2}\left(\begin{array}{c}
3 n, n+1,-n \\
2 n+1, n+1 / 2
\end{array} ; \frac{1}{4}\right)=\frac{\binom{2 n}{n}}{\binom{3 n}{n}}
$$

3. was easily computer proven (Wilf-Zeilberger) MAA: human proof?

The imaginary parts of first 4 zeroes are:
14.134725142
21.022039639
25.010857580
30.424876126

The first 1.5 billion are on the critical line Yet at 10^{22} the "Law of small numbers" still rules (Odlyzko)

Visualizing the Riemann Hypothesis

 (A Millennium Problem)

Curves at and around the 1st zero
‘All non-real zeros have real part one-half’ (The Riemann Hypothesis)

Note the monotonicity of $x \mapsto|\zeta(x+i y)|$ is equivalent to RH discovered in a Calgary class in 2002 by Zvengrowski and Saidak

PSLQ and Hex Digits of Pi

Finalist for the \$100K Edge of Computation Prize won by David Deutsch

My brother made the observation that this log formula allows one to compute binary digits of $\log 2$ without

EdgeThe Third Culture

Home	About Edge	Features	Edge Editions	Press	The Reality Club	Third Culture	Digerati	Edge Search

THE $\$ 100,000$ EDGE OF COMPUTATION SCIENCE PRIZE

For individual scientific work, extending the computational idea, performed, published, or newly applied within the past ten years.

The Edge of Computation Science Prize, established by Edge Foundation, Inc., is a $\$ 100,000$ prize initiated and funded by science philanthropist Jeffrey Epstein.

ALGORITHMIC PROPERTIES

(1) produces a modest-length string hex or binary digits of π, beginning at an arbitrary position, using no prior bits;

Now built into some compilers!

(2) is implementable on any modern computer;
(3) requires no multiple precision software;
(4) requires very little memory; and

(5) has a computational cost growing only slightly faster than the digit position.

Join PiHex

Download

Source Code

About

Credits

Status
Top Producers What's New? Other Projects Who am I? Email me!
PTM
hits since the counter last reset.

PiHex

A distributed effort to calculate Pi .

The Quadrillionth Bit of Pi is ' 0 '! The Forty Trillionth Bit of Pi is '0'! The Five Trillionth Bit of Pi is ' 0 '!

PiHex was a distributed computing project which used idle computing power to set three records for calculating specific bits of Pi. PiHex has now finished.
Undergraduate Colin Percival's grid computation

PiHex rivaled Finding Nemo

Position	Hex Digits Beginning At This Position
10^{6}	26C65E52CB4593
10^{7}	17AF5863EFED8D
10^{8}	ECB840E21926EC
10^{9}	$85895585 A 0428 B$
10^{10}	$921 C 73 C 6838 F B 2$
10^{11}	9C381872D27596
1.25×10^{12}	07E45733CC790B
2.5×10^{14}	E6216B069CB6C1

PSLQ and Normality of Digits

did you ever

 Wonder ...why the digits of pi look random?

Bailey and Crandall observed that BBP numbers most probably are normal and make it precise with a hypothesis on the behaviour of a dynamical system.

- For example Pi is normal in Hexadecimal if the iteration below, starting at zero, is uniformly distributed in $[0,1]$

$$
x_{n}=\left\{16 x_{n-1}+\frac{120 n^{2}-89 n+16}{512 n^{4}-1024 n^{3}+712 n^{2}-206 n+21}\right\}
$$

Consider the hex digit stream:

$$
d_{n}=\left\lfloor 16 x_{n}\right\rfloor
$$

We have checked this gives first million hex-digits of ${ }^{\mathbf{~ P ~}}$ Pi Is this always the case? The weak Law of Large Numbers implies this is very probably true.

Outline. What is HIGH PERFORMANCE MATHEMATICS?

1. Visual Data Mining in Mathematics.
\checkmark Fractals, Polynomials, Continued Fractions* \checkmark Pseudospectra and Code Optimization
2. High Precision Mathematics.
3. Integer Relation Methods.
\checkmark Chaos, Zeta* and the Riemann Hypothesis
\checkmark Hex-Pi and Normality
4. Inverse Symbolic Computation.

Drive
\checkmark A problem of Knuth*, $\pi / 8$, Extreme Quadrature
5. Demos and Conclusion.

A Colour and an Inverse Calculator (1995)

Inverse Symbolic Computation

Archimedes: $223 / 71<\pi<22 / 7$ Inferring mathematical structure from numerical data

- Mixes large table lookup, integer relation methods and intelligent preprocessing - needs micro-parallelism
- It faces the "curse of exponentiality"
- Implemented as Recognize in Mathematica

InVERSE SYMBOLIC COLCULATOR

A guided proof followed on asking why Maple could compute the answer so fast.

The answer is Gonnet's Lambert's W which solves $\mathrm{W} \exp (\mathrm{W})=\mathrm{x}$

W's Riemann surface

Donald Knuth* asked for a closed form evaluation of:

ENTERING

evalf(Sum(k^k/k!/exp(k)-1/sqrt(2*Pi*k),k=1..infinity),16)

'Simple Lookup’ fails; 'Smart Look up' gives:

Results of the search:

Maple output:
programs and specialized tybolic Calculator, a set of dedicated to the identification of mathematical constants a way to produce identities with functiombers. It also serves as is one of the main ongoing proj functions and real numbers. It Experimental and Constructive 1 at the Centre for

BOLIC CALCULATOR

579390106 was probably generated by one s or found in one of the given tables. shortest to longest description

Mixereanstants with 5 operations
5925971579390106 zeta $(1 / 2) / \mathrm{sr}(2) / \mathrm{sr}(\mathrm{Pi})$
Browse around . 5825971579390106.

Quadrature I. Hyperbolic Knots

Dalhousie Distributed Research Institute and Virtual Environment

$$
\begin{equation*}
\frac{24}{7 \sqrt{7}} \int_{\pi / 3}^{\pi / 2} \log \left|\frac{\tan t+\sqrt{7}}{\tan t-\sqrt{7}}\right| d t \stackrel{?}{=} L_{-7}(2) \tag{@}
\end{equation*}
$$

where

$$
\begin{aligned}
L_{-7}(s)=\sum_{n=0}^{\infty} & {\left[\frac{1}{(7 n+1)^{s}}+\frac{1}{(7 n+2)^{s}}-\frac{1}{(7 n+3)^{s}}\right.} \\
& \left.+\frac{1}{(7 n+4)^{s}}-\frac{1}{(7 n+5)^{s}}-\frac{1}{(7 n+6)^{s}}\right]
\end{aligned}
$$

"Identity" (@) has been verified to 20,000 places. I have no idea of how to prove it.

The easiest of 998 empirical results (PSLQ, PARI, SnapPea) linking physics/topology (LHS) to number theory (RHS). [JMB-Broadhurst, 1996]

Extreme Quadrature ... 20,000 Digits (50 Certified) on 1024 CPUs

Ш. The integral was split at the nasty interior singularity Ш. The sum was `easy’.
Ш. All fast arithmetic \& function evaluation ideas used

Run-times and speedup ratios on the Virginia Tech G5 Cluster

CPUs	Init	Integral \#1	Integral\#2	Total	Speedup
1	$* 190013$	$* 1534652$	${ }^{*} 1026692$	$* 2751357$	1.00
16	12266	101647	64720	178633	15.40
64	3022	24771	16586	44379	62.00
256	770	6333	4194	11297	243.55
1024	199	1536	1034	2769	993.63

Parallel run times (in seconds) and speedup ratios for the 20 , ooo-digit problem

Expected and unexpected scientific spinoffs

- 1986-1996. Cray used quartic-Pi to check machines in factory
- 1986. Complex FFT sped up by factor of two
- 2002. Kanada used hex-pi (20hrs not 300hrs to check computation)
- 2005. Virginia Tech (this integral pushed the limits)
- 2006. A 3D Ising integral took 18.2 hrs on 256 cpus (for 500 places)
- 1995- Math Resources (another lecture)

Quadrature II. Ising Susceptibility Integrals

Bailey, Crandall and I are currently studying:
$D_{n}:=\frac{4}{n!} \int_{0}^{\infty} \cdots \int_{0}^{\infty} \frac{\prod_{i<j}\left(\frac{u_{i}-u_{j}}{u_{i}+u_{j}}\right)^{2}}{\left(\sum_{j=1}^{n}\left(u_{j}+1 / u_{j}\right)\right)^{2}} \frac{d u_{1}}{u_{1}} \cdots \frac{d u_{n}}{u_{n}}$.
The first few values are known: $D_{1}=2, D_{2}=2 / 3$, while

$$
D_{3}=8+\frac{4}{3} \pi^{2}-27 L_{-3}(2)
$$

and

$$
D_{4}=\frac{7}{12} \zeta(3)=\frac{4}{9} \pi^{2}-\frac{1}{6}-\frac{7}{2} \zeta(3)
$$

\checkmark Computer Algebra Systems can (with help) find the first 3
$\checkmark D_{4}$ is a remarkable 1997 result due to McCoy--Tracy--Wu

An Extreme Ising Quadrature

Recently Tracy asked for help 'experimentally' evaluating D_{5}

Using `PSLQ` this entails being able to evaluate a five dimensional integral to at least 50 or 250 places so that one can search for combinations of 6 to 15 constants

\checkmark Monte Carlo methods can certainly not do this
\checkmark We are able to reduce D_{5} to a horrifying several-page-long 3-D symbolic integral !
\checkmark A 256 cpu 'tanh-sinh' computation at LBNL provided 500 digits in 18.2 hours on "Bassi", an IBM Power5 system: A FIRST
0.00248460576234031547995050915390974963506067764248751615870769 216182213785691543575379268994872451201870687211063925205118620 699449975422656562646708538284124500116682230004545703268769738 489615198247961303552525851510715438638113696174922429855780762 804289477702787109211981116063406312541360385984019828078640186 930726810988548230378878848758305835125785523641996948691463140 911273630946052409340088716283870643642186120450902997335663411 372761220240883454631501711354084419784092245668504608184468...

Quadrature III. Pi/8?
 A numerically challenging integral tamed
 $$
\int_{0}^{\infty} \cos (2 x) \prod_{n=1}^{\infty} \cos \left(\frac{x}{n}\right) d x \stackrel{?}{=} \frac{\pi}{8}
$$

Now $\pi / 8$ equals

$$
\underline{0.392699081698724154807830422909937860524645434 ~}
$$ while the integral is

0.3926990816987241548078304229099378605246461749

A careful tanh-sinh quadrature proves this difference after 43 correct digits

Fourier analysis explains this happens when a hyperplane meets a hypercube (LP)

REFERENCES

Paseky, Merci a tous

Enigma

"The object of mathematical rigor is to sanction and legitimize the conquests of intuition, and there was never any other object for it."

- J. Hadamard quoted at length in E. Borel, Lecons sur la theorie des fonctions, 1928.

Outline. What is HIGH PERFORMANCE MATHEMATICS?

1. Visual Data Mining in Mathematics.
\checkmark Fractals, Polynomials, Continued Fractions* \checkmark Pseudospectra and Code Optimization
2. High Precision Mathematics.
3. Integer Relation Methods.
\checkmark Chaos, Zeta* and the Riemann Hypothesis
\checkmark Hex-Pi and Normality
4. Inverse Symbolic Computation.

Drive
\checkmark A problem of Knuth*, $\pi / 8$, Extreme Quadrature
5. Demos and Conclusion.

Pascal's Triangle Interface

INSTRUCTIONS www.cecm.sfu.calinterfaces

Output Image

Rows (max 100): 30

Modulus (2 to 16):
5

Image size: 300

Deterministic and Random

$$
\begin{array}{rrrrrr}
1 & 1121 & 1331 & 14641 & 15101051 \\
& 1615 ? 01561 & 1721352171
\end{array}
$$

FRACTALINA

About Fractalina

Fractalina allows the input and itera play "the chaos game".

To see it in action, you can go direc
The chaos game begins with the sel special kind. Each transformation h sometimes informally think of the p like "go halfway to the transformati values that determine how it works.

The chaos game can be explained this way:

1. Starting at any point, randomly choose one of the transformations.
2. Go part of the way towards the center point of that transformation and rotate part way around it.
3. Repeat the process from the resulting point.

Chaos Games in Genetics

(Euclidean) Reflection in a Circle:

CINDERELLA's

 dynamic geometry
Thentencive softive whaterello bent $\stackrel{n}{5}=$ $=-2$

 (6)FOUR DEMOS combining inversion, reflection and dilation

1. Indraspearls
2. Apollonius *
3. Hyperbolicity
4. Gasket
www.cinderella.de

KnotPlot's Interactive Proofs

The Perko Pair $\mathbf{1 0}_{161}$ and $\mathbf{1 0}_{162}$

are two adjacent 10-crossing knots (1900)

First shown to be the same by Ken Perko in 1974 and beautifully made dynamic in KnotPlot (open source)

Outline. What is HIGH PERFORMANCE MATHEMATICS?

1. Visual Data Mining in Mathematics.
\checkmark Fractals, Polynomials, Continued Fractions*
\checkmark Pseudospectra and Code Optimization
2. High Precision Mathematics.
3. Integer Relation Methods.
\checkmark Chaos, Zeta* and the Riemann Hypothesis,
\checkmark Hex-Pi and Normality
4. Inverse Symbolic Computation.

Drive
\checkmark A problem of Knuth*, $\pi / 8$, Extreme Quadrature
5. Conclusion.

CONCLUSION

ENGINES OF DISCOVERY: The 21st Century Revolution

The Long Range Plan for High Performance Computing in Canada

The LRP tells a Story

-
 The Story

Executive

Summary

Main Chapters 8:8. Technology

Operations

- HQP
- Budget

25 Case

Studies

many sidebars

One Day ..

High-performance computing (HPC) affects the lives of Canadians every day. We can best explain this by telling you a story. It's about an ordinary family on an ordinary day, Russ, Susan, and Kerri Sheppard. They live on a farm 15 kilometres outside Wyoming, Ontario. The land first produced oil, and now it yields milk; and that's just fine locally.

Their day, Thursday, May 29, 2003, begins at 4:30 am when the alarm goes off. A busy day, Susan ZhongSheppard will fly to Toronto to see her father, Wu Zhong, at Toronto General Hospital; he's very sick from a stroke. She takes a quick shower and packs a day bag for her 6 am flight from Sarnia's Chris Hadfield airport. Russ Sheppard will stay home at their dairy farm, but his day always starts early. Their young daughter Kerri can sleep three more hours until school.

Waiting, Russ looks outside and thinks, It's been a dryish spring. Where's the rain?

In their farmhouse kitchen on a family-sized table sits a PC with a high-speed Internet line. He logs on and finds the Farmer Daily site. He then chooses the Environment Canada link, clicks on Ontario, and then scans down for SarniaLambton.

WEATHER PREDICTION

The "quality" of a five-day forecast in the year 2003 was equivalent to that of a 36 -hour forecast in 1963 [REF 1]. The quality of daily forecasts has risen sharply by roughly one day per decade of research and HPC progress. Accurate forecasts transform into billions of dollars saved annually in agriculture and in natural disasters. Using a model developed at Dalhousie University (Prof. Keith Thompson), the Meteorological Service of Canada has recently been able to predict. coastal flooding in Atlantic Canada early enough for the residents to take preventative action.

The backbone that makes so much of our

Canadian science

possible Enabling Canadian
research excellence performance computing

[^0]: "The idea that we could make biology mathematical, I think, perhaps is not working, but what is happening, strangely enough, is that maybe mathematics will become biological!" Greg Chaitin, Interview, 2000.

