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1 Introduction

The classical Walrasian equilibrium model of welfare economics and its various generalizations have
long been recognized as an important part of the economic theory and applications. It has been
well understood that the concept of Pareto efficiency/optimality and its variants play a crucial
role for the study of equilibria and making the best decisions for competitive economies; see, e.g.,
[2, 5, 6, 7, 9, 10, 14, 20, 22, 23, 33] and the references therein. After the pioneering work by Hicks,
Lange, and Samuelson in the late 1930s and in the 1940s on the marginal rates of substitutions at
Pareto optimal allocations, which lay at the foundations of welfare economics, the next crucial step
was made in the beginning of 1950s by Arrow [6] and Debreu [10] for convex economies. Based on
the classical separation theorems for convex sets, they and their followers developed a nice theory
that, in particular, contains necessary and sufficient conditions for Pareto optimal allocations and
shows that each of such allocations leads to a decentralized equilibrium in convex economies. The
key result of this theory is now the classical second fundamental theorem of welfare economics stated
that any Pareto optimal allocation can be decentralized at price equilibria, i.e., it can be sustained
by a nonzero price vector at which each consumer minimizes his/her expenditure and each firm
maximizes its profit. The full statement of this result is definitely due to convexity, which is crucial
in the Arrow-Debreu model and its extensions. It is worth observing that the Arrow-Debreu general
equilibrium theory of welfare economics has played an important role in the development of convex
analysis as a mathematical discipline with its subsequent numerous applications.

On the other hand, the relevance of convexity assumptions is often doubtful for many important
applications, which had been recognized even before developing the Arrow-Debreu model. It is
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well known, in particular, that convexity requirements do not hold in the presence of increasing
returns to scale in the production sector. A common approach to the study of nonconvex models is
based on utilizing local convex tangent approximations and then employing the classical separation
theorems for convex cones. Constructively it has been done by using the Clarke tangent cone,
which is automatically convex. In this way, marginal prices are formalized via Clarke’s normal cone
that, however, may be too large for satisfactory results in nonconvex models; the reader can find
many examples, discussions, and references in the paper by Khan [20]. The latter paper contains
much more adequate extensions of the second welfare theorem to nonconvex economies with finite-
dimensional commodity spaces, where marginal prices are formalized via the nonconvex normal
cone introduced by Mordukhovich [24].

In our previous work on the extended second welfare theorem(s) for nonconvex models [26, 27,
22] we developed an approach based on the extremal principle of variational analysis, which can be
treated as a variational counterpart of the classical separation in the case of nonconvex sets and
which plays essentially the same role in nonconvex variational analysis as separation theorems do in
the convex framework; see the survey paper by Mordukhovich [27] and also the book [29] for more
information. On the other hand, the extremal principle provides necessary conditions for extremal
points of nonconvex sets that particularly cover the case of Pareto-type optimal allocations. We
refer the reader to other recent publications [8, 13, 14, 16, 17, 28, 34] that explore some related
nonconvex separation properties in applications to various nonconvex models of welfare economics
in both finite-dimensional and infinite-dimensional frameworks.

The machinery of the extremal principle allows us to derive extended versions of the second wel-
fare theorem for nonconvex economies in both approximate/fuzzy and exact/limiting forms under
mild net demand qualification conditions needed in conventional cases of Pareto and weak Pareto
optimal allocations. In this way we establish efficient conditions ensuring the marginal price pos-
itivity when commodity spaces are ordered. The results obtained bring new information even in
the case of convex economies, since we do not impose either the classical interiority condition or
the widely implemented properness condition by Mas-Colell [23]. Moreover, in contrast to the vast
majority of publications on convex economies with ordered commodity spaces, our approach does
not require a lattice structure of the commodity space in question.

In this paper, we further develop the approach based on the extremal principle to nonconvex
economies with infinite-dimensional commodity spaces. Among other developments, the main
emphasis now goes to the following issues, for which the results obtained seem to be new and useful
even for model with finite-dimensional commodities:

—introducing nonlinear prices to describe an approximate decentralized equilibrium of the con-
vex type in nonconvex economies for all the three basic versions of Pareto optimality mentioned
above, under the appropriate geometric assumptions on the commodity space in question;

—clarifying a surprisingly remarkable role of strong Pareto optimality in the context of extended
second welfare theorems for economies with ordered commodity spaces, which do not require any
net demand (interiority type) qualification conditions even in the classical convex settings.

2 Basic Model and Concepts of Welfare Economics

Let E be a normed commodity space of the economy E that involves n ∈ IN := {1, 2, . . .} consumers
with consumption sets Ci ⊂ E, i = 1, . . . , n, and m ∈ IN firms with production sets Sj ⊂ E, j =
1, . . . , m. Each consumer has a preference set Pi(x) that consists of elements in Ci preferred to
xi by this consumer at the consumption plan/bundle x = (x1, . . . , xn) ∈ C1 × · · · × Cn. This
is a useful generalization (with valuable economic interpretations) of standard ordering relations
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given, in particular, by utility functions as in the classical models of welfare economics. We have
by definition that xi /∈ Pi(x) for all i = 1, . . . , n and always assume that Pi(x) 6= ∅ for some
i ∈ {1, . . . , n}. For convenience we put clPi(x) := {xi} if Pi(x) = ∅.

Now define feasible allocations of the economy E imposing market constraints formalized via a
given subset W ⊂ E of the commodity space; we label W as the net demand constraint set in E .

Definition 2.1 (feasible allocations). Let x = (xi) := (x1, . . . , xn), and let y = (yj) :=
(y1, . . . , ym). The pair (x, y) ∈ ∏n

i=1 Ci ×
∏m

j=1 Sj is called a feasible allocation of E if

w :=
n∑

i=1

xi −
m∑

j=1

yj ∈ W. (2.1)

Introducing the net constraint set as in [26] allows us to unify some conventional situations in
economic models and to give a useful economic insight in the general framework. Indeed, in the
classical case the set W consists of one element {ω}, where ω is an aggregate endowment of scarce
resources. Then constraint (2.1) reduces to the markets clear condition. Another conventional
framework appears in (2.1) when the commodity space E is ordered by a closed positive cone
E+ and we put W := ω − E+, which corresponds to the implicit free disposal of commodities.
Generally constraint (2.1) describes a natural situation that may particularly happen when the
initial aggregate endowment is not exactly known due to, e.g., incomplete information. In the
latter general case the set W reflects some uncertainty in the economic model under consideration.

In this paper we consider the following three Pareto-type notions of optimality for feasible al-
locations in the economic model E : weak Pareto optimality, Pareto optimality, and strong Pareto
optimality. The first two notions have been well recognized and developed in the economic lit-
erature; they go back to the classical Pareto and weak Pareto concepts in vector/multiobjective
optimization defined via utility functions. To the best of our knowledge, the notion of strong Pareto
optimality in models of welfare economics was first introduced and studied by Khan [19]. Its special
role in the framework of second welfare theorems was observed by Mordukhovich [26, 27]; this will
be further developed in the present paper.

Definition 2.2 (Pareto-type optimal allocations). Let (x̄, ȳ) be a feasible allocation of the
economy E with the property

x̄i ∈ clPi(x̄) for all i = 1, . . . , n.

It is said that:
(i) (x̄, ȳ) is a local weak Pareto optimal allocation of E if there is a neighborhood O of

(x̄, ȳ) such that for every feasible allocation (x, y) ∈ O one has xi /∈ Pi(x̄) for some i ∈ {1, . . . , n}.
(ii) (x̄, ȳ) is a local Pareto optimal allocation of E if there is a neighborhood O of (x̄, ȳ)

such that for every feasible allocation (x, y) ∈ O either xi /∈ cl Pi(x̄) for some i ∈ {1, . . . , n} or
xi /∈ Pi(x̄) for all i = 1, . . . , n.

(iii) (x̄, ȳ) is a local strong Pareto optimal allocation of E is there is a neighborhood O
of (x̄, ȳ) such that for every feasible allocation (x, y) ∈ O with (x, y) 6= (x̄, ȳ) one has xi /∈ clPi(x̄)
for some i ∈ {1, . . . , n}.

To deal with weak Pareto and Pareto optimal allocations, we need some qualification conditions.
The following ones were formulated and studied in [26, 27, 22]; they are in the line of “asymptotically
including conditions” by Jofré [16] and Jofré and Rivera [17] (for W = {ω}) and their early versions
in Cornet [9] and Khan [19, 20]; cf. also the references and discussions therein.
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Definition 2.3 (net demand qualification conditions). Let (x̄, ȳ) be a feasible allocation of
the economy E, and let

w̄ :=
n∑

i=1

x̄i −
m∑

j=1

ȳj . (2.2)

Given ε > 0, we consider the set

∆ε :=
n∑

i=1

cl Pi(x̄) ∩ (x̄i + εIB)−
m∑

j=1

clSj ∩ (ȳj + εIB)− clW ∩ (w̄ + εIB)

and say that:
(i) The net demand qualification (NDQ) condition holds at (x̄, ȳ) if there are ε > 0, a

sequence {ek} ⊂ X with ek → 0 as k →∞, and a consumer index i0 ∈ {1, . . . , n} such that

∆ε + ek ⊂ Pi0(x̄) +
∑

i6=i0

clPi(x̄)−
m∑

j=1

Sj −W

for all k ∈ IN sufficiently large.
(ii) The net demand weak qualification (NDWQ) condition holds at (x̄, ȳ) if there are

ε > 0 and a sequence ek → 0 as k →∞ such that

∆ε + ek ⊂
n∑

i=1

Pi(x̄)−
m∑

j=1

Sj −W

for all k ∈ IN sufficiently large.

Observe that the qualification conditions from Definition 2.3 hold of either one among preference
or production sets is epi-Lipschitzian around the corresponding point in the sense of Rockafellar; see
Section 3. It is well known that for convex sets Ω the epi-Lipschitzian property of Ω is equivalent
to intΩ 6= ∅. Thus the above qualification conditions may be viewed as far-going extensions of
the classical nonempty interiority condition well-developed for convex models of welfare economics.
We refer the reader to [22, 29] for more general sufficient conditions ensuring the fulfillment of
both NDQ and NDWQ properties. It follows from those results that no assumptions on either
preference or production sets are needed to ensure the above qualification conditions provided that
the net demand constraint set W is epi-Lipschitzian around the point w̄ defined in (2.2). The latter
covers particularly the case of “free-disposal Pareto optimum” studied by Cornet [9] for nonconvex
economies with finite-dimensional commodity spaces.

3 Tools of Variational Analysis

This section contains some constructions and results from variational analysis and generalized differ-
entiation that play the crucial role in the subsequent extensions of the second welfare theorem with
nonlinear price descriptions of decentralized equilibria. We start with the basic generalized differen-
tial constructions referring the reader to the books of Rockafellar and Wets [32] and Mordukhovich
[29] for more details in finite dimensions [32] and in both finite-dimensional and infinite-dimensional
spaces [29]. Recall that, given a set-valued mapping F :X →→ X∗ from a Banach space X to its
dual space X∗ endowed with the weak∗ topology w∗, the notation

Lim sup
x→x̄

F (x) :=
{
x∗ ∈ X∗

∣∣∣ ∃ sequences xk → x̄ and x∗k
w∗→ x∗

such that x∗k ∈ F (xk) for all k ∈ IN
}
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stands for the sequential Kuratowski-Painlevé upper/outer limit of F as x → x̄.

Definition 3.1 (generalized normals). Let Ω ⊂ X be a nonempty subset of a Banach space,
and let ε ≥ 0.

(i) Given x ∈ Ω, define the set of ε-normals to Ω at x by

N̂ε(x; Ω) :=
{
x∗ ∈ X∗

∣∣∣ lim sup
u→x

〈x∗, u− x〉
‖u− x‖ ≤ ε

}
, (3.1)

where u
Ω→ x means that u → x with u ∈ Ω. When ε = 0, the set (3.1) is a convex cone called the

prenormal cone or the Fréchet normal cone to Ω at x and denoted by N̂(x; Ω). If x /∈ Ω,
put N̂ε(x; Ω) = ∅ for all ε ≥ 0.

(ii) The conic set

N(x̄; Ω) := Lim sup
x→x̄
ε↓0

N̂ε(x; Ω) (3.2)

is called the (basic, limiting) normal cone to Ω at x̄ ∈ Ω.

In the finite-dimensional case X = IRn, the basic (often nonconvex) normal cone (3.2) reduces
to the one introduced by Mordukhovich [24] as

N(x̄; Ω) = Lim sup
x→x̄

[cone(x−Π(x; Ω))], (3.3)

where “cone” stands for the conic hull of a set, and where Π(x; Ω) is the multivalued Euclidean
projector of x on the closure of Ω. The set of ε-normals (3.1) and the extension (3.2) of the basic
normal cone to Banach spaces first appeared in Kruger and Mordukhovich [21].

If Ω ⊂ X is convex, then for all ε ≥ 0 one has




N̂ε(x̄; Ω) = N̂(x̄; Ω) + εIB∗ = {x∗ ∈ X∗| 〈x∗, x− x̄〉 ≤ ε‖x− x̄‖ whenever x ∈ Ω},

N(x̄; Ω) = {x∗ ∈ X∗| 〈x∗, x− x̄〉 ≤ 0 whenever x ∈ Ω},
(3.4)

where IB∗ ⊂ X∗ (and likewise IB ⊂ X) stands for the closed unit ball in the space in question.
This implies that both prenormal and normal cones from Definition 3.1 reduce to the normal cone
of convex analysis for convex sets in Banach spaces.

Despite of (in fact due to) its nonconvexity, the basic normal cone (3.1) and associated subdif-
ferential and coderivative constructions of extended-real-valued functions and set-valued mappings
possess many useful properties in general Banach space settings; see [29]. However, the most reli-
able framework for the theory and applications of (3.1) is the realm of Asplund spaces, which can be
equivalently defined as Banach spaces whose separable subspaces have separable duals. This class
particularly includes all reflexive spaces; see, e.g., Phelps’ book [31] for more details and references.
It has been proved in [30], based on variational arguments, that

N(x̄; Ω) = Lim sup
x→x̄

N̂(x; Ω) (3.5)

when X is Asplund and when Ω is locally closed around x̄, i.e., one can equivalently put ε = 0 in
(3.2). Note also that the weak∗ convex closure cl ∗co N(x̄; Ω) of the basic normal cone agrees with
the Clarke normal cone in this setting; see [29, 30] for more details.
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Recall that a Banach space X admits a Fréchet smooth renorm if there is an equivalent norm
on X that is Fréchet differentiable at any nonzero point. In particular, every reflexive space admits
a Fréchet smooth renorm. We also consider Banach spaces admitting an S-smooth bump function
with respect to a given class S, i.e., a function b:X → IR such that b(·) ∈ S, b(x0) 6= 0 for some
x0 ∈ X, and b(x) = 0 whenever x lies outside a ball in X. In what follows we deal with the three
classes of S-smooth functions on X: Fréchet smooth (S = F), Lipschitzian and Fréchet smooth
(S = LF), and Lipschitzian and continuously differentiable (S = LC1). It is well known that the
class of spaces admitting a LC1-smooth bump function strictly includes the class of spaces with a
Fréchet smooth renorm. Observe that all the spaces listed above are Asplund.

Theorem 3.2 (smooth variational descriptions of Fréchet normals). Let Ω be a nonempty
subset of a Banach space X, and let x̄ ∈ Ω. The following hold:

(i) Given x∗ ∈ X∗, we assume that there is a function s: U → IR defined on a neighborhood of x̄
and Fréchet differentiable at x̄ such that ∇s(x̄) = x∗ and s(x) achieves a local maximum relative to
Ω at x̄. Then x∗ ∈ N̂(x̄; Ω). Conversely, for every x∗ ∈ N̂(x̄; Ω) there is a function s:X → IR such
that s(x) ≤ s(x̄) = 0 whenever x ∈ Ω and that s(·) is Fréchet differentiable at x̄ with ∇s(x̄) = x∗.

(ii) Assume that X admits a Fréchet smooth renorm. Then for every x∗ ∈ N̂(x̄; Ω) there is a
concave Fréchet smooth function s: X → IR that achieves its global maximum relative to Ω uniquely
at x̄ and such that ∇s(x̄) = x∗.

(iii) Assume that X admits an S-smooth bump function, where S stands for one of the classes
F , LF , or LC1. Then for every x∗ ∈ N̂(x̄; Ω) there is an S-smooth function s:X → IR satisfying
the conclusions in (ii).

Proof. Under the assumptions in (i) one has

s(x) = s(x̄) + 〈x∗, x− x̄〉+ o(‖x− x̄‖) ≤ s(x̄)

for all x ∈ Ω near x̄. Hence we get

〈x∗, x− x̄〉+ o(‖x− x̄‖) ≤ 0 for such x,

which implies that x∗ ∈ N̂(x̄; Ω) due to Definition 3.1(i) with ε = 0.
To justify the converse statement in (i), pick and x∗ ∈ N̂(x̄; Ω) and define the function

s(x) :=

{
min {0, 〈x∗, x− x̄〉} if x ∈ Ω,
〈x∗, x− x̄〉 otherwise.

It follows from the construction of Fréchet normals in (3.1) as ε = 0 that this function is Fréchet
differentiable at x̄ with ∇s(x̄) = x∗. Moreover, one clearly has by definition of s(·) that s(x̄) = 0
and that s(x) ≤ 0 whenever x ∈ Ω, which completes the proof of (i).

Assertions (ii) and (iii) follow from the subdifferential results of [11, Theorem 4.6] whose proof
is much more involved; see also the proof of [29, Theorem 1.30] for some simplifications. 4

The basic geometric result of variational analysis is the extremal principle, which is crucial in
our applications to the extended second welfare theorems. Given a common point x̄ of two sets
Ω1,Ω2 ⊂ X in a Banach space, we say that x̄ is a locally extremal point of the set system {Ω1, Ω2} if
there exists a neighborhood U of x̄ such that for any ε > 0 there is a ∈ εIB with (Ω1+a)∩Ω2∩U = ∅.
The next theorem gives a version of the extremal principle used in what follows; see Mordukhovich
[27, 29] for the proof, more discussions, and various applications.
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Theorem 3.3 (extremal principle). Let x̄ ∈ Ω1∩Ω2 be a locally extremal point of the two closed
subsets of the Asplund space X. Then for every ε > 0 there are xi ∈ Ωi ∩ (x̄ + εIB), i = 1, 2, and
x∗ ∈ X∗ with ‖x∗‖ = 1 such that

x∗ ∈ (N̂(x1; Ω1) + εIB∗) ∩ (− N̂(x2; Ω2) + εIB∗).

For implementing limiting procedures in the extremal principle (as ε ↓ 0) and related results of
variational analysis, we need some normal compactness properties of sets and set-valued mappings.
Recall that a set Ω ⊂ X is sequentially normally compact, or SNC, at x̄ ∈ Ω if for any sequences
(xk, x

∗
k) ∈ X ×X∗ satisfying

x∗k ∈ N̂(xk; Ω), xk → x̄, and x∗k
w∗→ x̄

one has ‖x∗k‖ → 0 as k → ∞; cf. [30, 29] and the references therein. This property, which is
obviously automatic in finite dimensions, can be viewed as an extension of the finite codimension
property to nonconvex sets. It is closely related to, being generally weaker than, the compactly
epi-Lipschitzian (CEL) property of arbitrary sets Ω ⊂ X around x̄ ∈ Ω in the following sense of
Borwein-Strojwas: there are a compact set C ⊂ X, a neighborhood O of the origin in X, and a
number γ > 0 such that

Ω ∩ U + tO ⊂ Ω + tC for all t ∈ (0, γ). (3.6)

The case of a singleton C in (3.6) corresponds to the epi-Lipschitzian property of Ω around x̄ in
the sense of Rockafellar. A thorough study of the CEL property can be found in Ioffe [15], while
comprehensive relationships between the SNC and CEL properties have been recently established
by Fabian and Mordukhovich [12].

4 Extended Second Welfare Theorems

In this section we develop results on necessary conditions for Pareto and weak Pareto optimal
allocations of the nonconvex economy E with an Asplund commodity space E without imposing any
ordering structure on commodities. First we derive refined versions of the extended second welfare
theorem in approximate forms involving ε-equilibrium prices that support (local) Pareto and weak
Pareto suboptimal allocations. The obtained ε-equilibrium prices admit two types of equivalent
descriptions: either as marginal linear prices formalized via Fréchet-like normals, or as nonlinear
prices supporting a decentralized (i.e., convex-type) equilibrium in fully nonconvex settings; see
below. Note that the idea of using nonlinear prices in somewhat different frameworks have been
recently suggested and developed in the economic literature by Aliprantis et al. [3, 4, 5]. For the
reader’s information, we mention that in [5] an alternative notion of nonlinear prices is proposed for
convex economies; in [4] it is shown that such nonlinear prices are different from linear ones even for
convex economies with three-dimensional commodity spaces; and the last paper [3] characterizes
the major differences between linear and nonlinear prices introduced and studied in this trilogy.

Theorem 4.1 (approximate marginal and decentralized forms of the extended second
welfare theorem for Pareto and weak Pareto optimal allocations). Let the pair (x̄, ȳ) be
a local Pareto (resp. weak Pareto) optimal allocation of the economy E with an Asplund commodity
space E. Assume that the net demand qualification condition (resp. net demand weak qualification
condition) is satisfied at (x̄, ȳ). Then the following assertions hold:

7



(i) For every ε > 0 there exist a suboptimal triple

(x, y, w) ∈
n∏

i=1

cl Pi(x̄)×
m∏

j=1

cl Sj × clW

with w defined in (2.1) and a common marginal price p∗ ∈ E∗ \ {0} satisfying

−p∗ ∈ N̂(xi; cl Pi(x̄)) + εIB∗, (4.1)

with xi ∈ x̄i + ε
2IB for all i = 1, . . . , n,

p∗ ∈ N̂(yj ; cl Sj) + εIB∗ (4.2)

with yj ∈ ȳj + ε
2IB for all j = 1, . . . , m,

p∗ ∈ N̂(w; cl W ) + εIB∗ (4.3)

with w ∈ w̄ + ε
2IB, and

1− ε

2
√

n + m + 1
≤ ‖p∗‖ ≤ 1 + ε

2
√

n + m + 1
, (4.4)

where w̄ is defined in (2.2).
(ii) Furthermore, conditions (4.1)–(4.3) are equivalent to the existence of real-valued functions

gi, i = 1, . . . , n, and hj, j = 1, . . . , m + 1, on the commodity space E that are Fréchet differentiable
at xi, yj, and w, respectively, with





‖∇gi(xi)− p∗‖ ≤ ε, i = 1, . . . , n,
‖∇hj(yj)− p∗‖ ≤ ε, j = 1, . . . , m,
‖∇hm+1(w)− p∗‖ ≤ ε

(4.5)

and such that each gi, i = 1, . . . , n, achieves its global minimum over clPi(x̄) at xi, each hj,
j = 1, . . . , m, achieves its global maximum over cl Sj at yj, and hj+1 achieves its global maximum
over clW at w.

Proof. To prove assertion (i) in a parallel way for Pareto and weak Pareto optimal allocations we
check, following [26, 22], that (x̄, ȳ, w̄) is a locally extremal point of the system of the set system
{Ω1, Ω2} defined by

Ω1 :=
n∏

i=1

[
cl Pi(x̄) ∩ (x̄i + εIB)

]
×

m∏

j=1

[
cl Sj ∩ (ȳj + εIB)

]

×
[
clW ∩ (w̄ + εIB)

]
and

(4.6)

Ω2 :=
{
(x, y, w) ∈ X

∣∣∣
n∑

i=1

xi −
m∑

j=1

yj − w = 0
}

(4.7)

provided that the NDQ and NDWQ condition holds on the Pareto and weak Pareto case, respec-
tively. Then applying the extremal principle of Theorem 3.3 to this system of sets, we arrive at all
the conclusions (4.1)–(4.4) with the common marginal price p∗.
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To justify assertion (ii), we take p∗ satisfying the marginal price conditions (4.1)–(4.3) and find
p∗i and p∗j such that





−p∗i ∈ N̂(xi; cl Pi(x̄)), ‖p∗i − p∗‖ ≤ ε, i = 1, . . . , n,

p∗j ∈ N̂(yj ; cl Sj), ‖p∗j − p∗‖ ≤ ε, j = 1, . . . , m,

p∗j+1 ∈ N̂(w; cl W ), ‖p∗j+1 − p∗‖ ≤ ε.

(4.8)

Putting ∇gj(xi) = −p∗i as i = 1, . . . , n, ∇hj(yj) = p∗j as j = 1, . . . , m, and ∇hj+1 = p∗j+1 and then
applying the smooth variational description of Fréchet normals from assertion (i) of Theorem 3.2
held in arbitrary Banach spaces, we arrive at all the conclusions in (ii). 4

The established conclusions of Theorem 4.1(ii) can be naturally interpreted as follows: using
nonlinear prices given by the functions gi and hj differentiable at suboptimal allocations with the
derivatives (i.e., rates of change) arbitrarily close to the linear marginal price p∗, we are able to
approximately achieve a certain decentralized equilibrium in fully nonconvex models that is similar
to the classical (maximization-minimization) equilibrium as in the Arrow-Debreu second welfare
theorem for convex models of welfare economics. Note the specific representation of ε-normals to
convex sets in (3.4) easily leads a specific perturbed form of the decentralized equilibrium for convex
models; cf. [2, 16, 26, 22].

Additional assumptions on the commodity space of E allow us to provide more specified infor-
mation on nonlinear prices supporting the approximate decentralized equilibrium.

Theorem 4.2 (refined decentralized nonlinear prices in nonconvex economies). Let
(x̄, ȳ) be a local Pareto (resp. weak Pareto) optimal allocation of the economy E under the corre-
sponding assumptions of Theorem 4.1, and let p∗ be the common marginal price satisfying conditions
(4.1)–(4.4) at the suboptimal allocation (x, y, w). Then there are nonlinear prices gi, i = 1, . . . , n,
and hj, j = 1, . . . , m + 1, whose rates of change are arbitrarily close to p∗ as in (4.5) satisfying the
following additional properties:

(i) Suppose that E admits an equivalent norm Fréchet differentiable off the origin. Then all gi

and hj can be chosen as Fréchet differentiable on E and such that:
—–each gi is concave on E and achieves the global minimum over clPi(x̄) uniquely at xi for

i = 1, . . . , n;
—–each hj is concave on E achieving the global maximum over cl Sj uniquely at yi for j =

1, . . . , m and the global maximum over cl W uniquely at w for j = m + 1.
(ii) Suppose that E admits an S-smooth bump function from the classes S considered in Theo-

rem 3.2(iii). Then all gi and hj can be chosen as S-smooth on E and such that:
—–each gi achieves the global minimum over cl Pi(x̄) uniquely at xi whenever i = 1, . . . , n;
—–each hj achieves the global maximum over cl Sj uniquely at yi for j = 1, . . . , m and the global

maximum over clW uniquely at w for j = m + 1.

Proof. We proceed as in the proof of Theorem 4.1 employing now the refined smooth variational
descriptions of Fréchet normals from assertions (ii) and (iii) of Theorem 3.2 in (4.8) instead of that
from Theorem 3.2(i). 4

Next we provide necessary optimality conditions for Pareto and weak Pareto optimal allocations
of the nonconvex economy E in the exact/pointbased form of the extended second welfare theorem
under additional sequential normal compactness (SNC) assumptions imposed on either one of the
preference, production, or net demand constraint sets. Note that SNC property is the weakest
among known compactness-like requirements needed for exact forms of the second welfare theorem.
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In particular, it is generally weaker that the CEL property imposed in the corresponding extensions
by Jofré [16], Flam [13], and Florenzano et al. [14]; cf. Section 3. In this way we obtain an
improvement of even the classical second welfare theorem for convex economies; see below.

Following the previous pattern of Theorems 4.1 and 4.2, we present results in the two forms:
using first linear marginal equilibrium prices formalized via our basic normal cone (3.2) and then as
a limiting decentralized equilibrium in nonconvex models realized via nonlinear prices. Observe some
similarity between this limiting decentralized equilibrium with nonlinear prices and the so-called
“virtual equilibrium” introduced recently by Jofré, Rockafellar and Wets [18] in convex Walrasian
models of exchange via a limiting procedure from a classical equilibrium.

Theorem 4.3 (exact forms of the extended second welfare theorem for Pareto and weak
Pareto optimal allocations). Let (x̄, ȳ) be a local Pareto (resp. weak Pareto) optimal allocation
of the economy E satisfying the corresponding assumptions of Theorem 4.1 with w̄ defined in (2.2).
Assume also that one of the sets

cl Pi(x̄), i = 1, . . . , n; cl Sj , j = 1, . . . , m; clW

is sequentially normally compact at x̄i, ȳj, and w̄, respectively. Then the following hold:
(i) There is a marginal equilibrium price p∗ ∈ E∗ \ {0} satisfying

−p∗ ∈ N(x̄i; cl Pi(x̄)), i = 1, . . . , n, (4.9)

p∗ ∈ N(ȳj ; cl Sj), j = 1, . . . , m, (4.10)

p∗ ∈ N(w̄; cl W ). (4.11)

(ii) Under the assumptions made, there exist sequences of smooth nonlinear prices gk = (gk
1 , . . . , gk

n)
and hk = (hk

1, . . . , h
k
m+1) and sequences of suboptimal allocations

(xk, yk) ∈
n∏

i=1

clPi(x̄)×
m∏

j=1

clSj with wk :=
n∑

i=1

xk
i −

m∑

j=1

yk
j ∈ clW

such that (xk, yk, wk, gk, hk) forms a nonlinear price decentralized equilibrium, which arbitrarily
closely approximates the marginal price equilibrium (x̄, ȳ, w̄, p∗). The latter means that:

—– for all k ∈ IN , each gk
i and hk

j is Fréchet differentiable at xk
i , yk

j , and wk achieving the global
minimum over cl Pi(x̄) and the global maximum over clS and clW at these points for i = 1, . . . , n,
j = 1, . . . , m, and j = m + 1, respectively;

—–one has the convergence

(xk, yk, wk) → (x̄, ȳ, w̄), ∇gk
i (xk

i ) =: pk
i

w∗→ p∗, ∇hk
j (y

k
j ) =: pk

j
w∗→ p∗, ∇hk

m+1(w
k) =: pk

m+1
w∗→ p∗

as k →∞ with i = 1, . . . , n and j = 1, . . . , m.
Furthermore, under the additional assumptions on the commodity space E made in assertions

(i) and (ii) of Theorem 4.2, the approximate nonlinear prices gk and hk enjoy the corresponding
properties listed therein for all k ∈ IN .
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Proof. To justify assertion (i), we proceed similarly to the proof of [26, Theorem 4.4] and [22,
Theorem 5.2] by passing to the limit from the relationships of Theorem 4.1(i) as ε ↓ 0.

To establish the first part of assertion (ii), take ε := 1/k, k ∈ IN , in Theorem 4.1 and denote
by (xk, yk, wk) the sequence of suboptimal allocations and by (pk, gk, hk) the sequence of the cor-
responding linear and nonlinear prices satisfying all the conclusions in both assertions (i) and (ii)
of that theorem for ε = 1/k. It follows from the mentioned proof of assertion (i) of this theorem
that pk w∗→ p∗ 6= 0 as k → ∞, where p∗ is a marginal price satisfying (4.9)–(4.11). Furthermore, it
follows from relations (4.5) as ε = 1/k that

‖pk
i − pk‖ → 0, i = 1, . . . , n, and ‖pk

j − pk‖ → 0, j = 1, . . . , m + 1, as k →∞,

where pk
i := ∇gk

i (xk) for i = 1, . . . , n, pk
j := ∇hk

j (y
k
j ) for j = 1, . . . ,m, and pk

m+1 := ∇hk
m+1(w

k).
This justifies the weak∗ convergence of all pk

i and pk
j to p∗ as claimed in the theorem. The last state-

ment of the theorem follows from this procedure by applying assertions (i) and (ii) of Theorem 4.2
at each approximating step with ε = 1/k. 4

Note that the limiting decentralized descriptions of the marginal price equilibrium from The-
orem 4.3 are achieved due to the refined formalization of marginal prices in the extended second
welfare theorem via our nonconvex basic normal cone. It does not seem to be possible to derive
results of this type from previous formalizations of marginal prices in nonconvex models of welfare
economics via the Clarke normal cone and also via Ioffe’s extensions of the basic normal cone to
the general Banach space setting; cf. [15, 19, 29, 30] for more details and discussions.

For models of welfare economics with convex data, we arrive at the following corollary of
Theorem 4.3, which provides an improvement of the classical second welfare theorem for convex
economies with Asplund commodity spaces for Pareto and weak Pareto optimal allocations.

Corollary 4.4 (improved second welfare theorem for convex economies). In addition to
the assumptions of Theorem 4.3, suppose that all the preference and production sets

Pi(x̄), i = 1, . . . , n, and Sj , j = 1, . . . , m,

are convex and that the net demand constraint set W admits the representation

W = ω + Γ with some ω ∈ cl W,

where Γ is a nonempty convex subcone of E. Then there is a nonzero price p∗ ∈ E∗ satisfying the
vanishing excess demand condition

〈
p∗,

n∑

i=1

x̄i −
m∑

j=1

ȳj − ω
〉

= 0 (4.12)

and the decentralized equilibrium relationships
{

x̄i minimizes 〈p∗, xi〉 over xi ∈ clPi(x̄i) whenever i = 1, . . . , n,
ȳj maximizes 〈p∗, yj〉 over yj ∈ clSj whenever j = 1, . . . , m.

(4.13)

Note that the assumptions of Corollary 4.4 essentially improve the nonempty interiority con-
dition of the classical second welfare theorem for convex economies. As shown and discussed in
[12, 29], there are convex sets in Asplund spaces, which are SNC while having empty even relative
interiors and not being CEL.
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5 Nonconvex Economies with Ordered Commodity Spaces

In the concluding section of the paper we study our basic model E of welfare economics whose
commodity space E is ordered by the closed positive cone

E+ := {e ∈ E| e ≥ 0},

where the (standard) partial ordering relation is denoted by ≥, in accordance with the conventional
notation in the economic literature. Note that in what follows we do not impose a lattice structure
on E and do not assume the fulfillment of any properness condition of the Mas-Colell type.

The first result provide a specification of Theorem 4.3 for the case of ordered commodity spaces
ensuring the marginal price positivity by [22, Proposition 4.7].

Theorem 5.1 (price positivity for Pareto and weak Pareto optimal allocations). Let
(x̄, ȳ) be a local Pareto (resp. weak Pareto) optimal allocation of the economy E. In addition to the
corresponding assumptions of Theorem 4.3, suppose that E is an ordered space and that one of the
following conditions holds:

(a) There is a consumer index i ∈ {1, . . . , n} such that the corresponding consumer satisfies the
desirability condition at x̄:

clPi(x̄) + E+ ⊂ cl Pi(x̄). (5.1)

(b) There is a production j ∈ {1, . . . , m} such that the corresponding firm satisfies the free
disposal condition:

clSj − E+ ⊂ cl Sj . (5.2)

(c) The net demand constraint set W exhibits the implicit free disposal of commodities:

clW − E+ ⊂ cl W. (5.3)

Then there is a positive marginal price p∗ ∈ E∗
+\{0} satisfying relations (4.9)–(4.11). Furthermore,

the marginal price equilibrium (x̄, ȳ, w̄, p∗) can be arbitrarily closely approximated by a sequence of
nonlinear price decentralized equilibria (xk, yk, wk, qk, hk) as in assertion (ii) of Theorem 4.3.

Observe that each of the conditions in (a)–(c) implies the epi-Lipschitzian property of the
corresponding sets clPi(x̄), cl Sj , and clW provided that intE+ 6= ∅. It is not hard to check that
the latter nonempty interior requirement on the positive cone of E ensures also the fulfillment
of the qualification and normal compactness conditions of Theorem 4.3 and thus the existence of
a positive marginal price p∗ ∈ E∗

+ \ {0} and the approximating nonlinear prices of decentralized
equilibria in Theorem 5.1 for Pareto and weak Pareto optimal allocations.

Our principal observation is that the above net demand qualification conditions, related to the
nonempty interiority requirement intE+ 6= ∅ for ordered commodity spaces, are not needed at all
for strong Pareto optimal allocations of convex and nonconvex economies, where intE+ = ∅ in
many settings important for both the theory and applications. We present approximate and exact
versions of the extended second welfare theorem for strong Pareto optimal allocations. Some of the
results below require the generating condition on the closed positive cone E+ ⊂ E, which means
that E+ − E+ = E. This class of Banach spaces is sufficiently large including, in particular, all
Riesz spaces whose generating positive cones typically have empty interiors.
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Theorem 5.2 (approximate marginal and decentralized forms of the extended second
welfare theorem for strong Pareto optimal allocations). Let (x̄, ȳ) be a local strong Pareto
optimal allocation of the economy E with an ordered Asplund commodity space E, and let the sets
Sj, W be locally closed near ȳj and w̄, respectively. Then the following hold:

(i) Assume that the closed positive cone E+ is generating and that either the economy exhibits
the implicit free disposal of commodities

W − E+ ⊂ W, (5.4)

or the free disposal production condition

Sj − E+ ⊂ Sj for some j ∈ {1, . . . ,m} (5.5)

is fulfilled, or n > 1 and there is a consumer i0 ∈ {1, . . . , n} such that Pi0(x̄) 6= ∅ and one has the
desirability condition

cl Pi(x̄) + E+ ⊂ cl Pi(x̄) for some i ∈ {1, . . . , n} \ {i0} (5.6)

Then for every ε > 0 there exist a suboptimal triple

(x, y, w) ∈
n∏

i=1

[
clPi(x̄)

⋂ (
x̄i +

ε

2
IB

)]

×
m∏

j=1

[
Sj

⋂ (
ȳj +

ε

2
IB

)]
×

[
W

⋂ (
w̄ +

ε

2
IB

)]
(5.7)

with w from (3.1) and an common marginal price p∗ ∈ E∗ satisfying relations (4.1)–(4.4).
(ii) Under the assumptions made in (i), there exist real-valued functions gi, i = 1, . . . , n, and

hj, j = 1, . . . , m + 1, on E that are Fréchet differentiable at xi, yj, and w, respectively, satisfy
(4.5), and such that each gi, i = 1, . . . , n, achieves its global minimum over clPi(x̄) at xi, each hj,
j = 1, . . . , m, achieves its global maximum over Sj at yj, and hj+1 achieves its global maximum
over W at w. Furthermore, the nonlinear prices gi and hj possess the additional properties listed
in Theorem 4.2 under the corresponding assumptions made therein.

(iii) All the conclusions in (i) and (ii) hold true if, instead of the assumption that E+ is a
generating cone, we suppose that E+ 6= {0} and at least two among the sets W , Sj for j = 1, . . . ,m,
and Pi(x̄) for i = 1, . . . , n satisfy the corresponding conditions in (5.4)–(5.6).

Proof. Consider the system of two sets {Ω1,Ω2} defined in (4.6), where the closure operation for
Sj and W in the construction of Ω2 is omitted, since these sets are locally closed around the points
of interest. Taking a strong Pareto local optimum (x̄, ȳ) of E , check by following the proof of [26,
Theorem 5.5] and using the fundamental Krein-Šmulian theorem [1] that (x̄, ȳ, w̄) ∈ Ω1 ∩ Ω2 is a
locally extremal point of {Ω1, Ω2} if either the assumptions in (i) or those in (iii) hold.

Applying now the extremal principle of Theorem 3.3 to system (4.6), we find a suboptimal
allocation (x, y, w) satisfying (5.7) and an approximate marginal price p∗ satisfying (4.1)–(4.4).
The nonlinear price conclusions formulated in (ii) are proved similarly to those in Theorems 4.1(ii)
and 4.2 under the new assumptions made in the case of strong Pareto optimal allocations. 4

Our next results establish strong Pareto versions of the exact second welfare theorem in both
terms of (positive) marginal price and limiting decentralized nonlinear price equilibria.
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Theorem 5.3 (exact forms of the extended second welfare theorem for strong Pareto
optimal allocations ). Let (x̄, ȳ) be a local strong Pareto optimal allocation of the economy E
with an ordered Asplund commodity space E, and let the sets Sj, W be locally closed near ȳj and
w̄, respectively. Suppose in addition to the assumptions made in either (i) or (ii) of Theorem 5.2
that one of the sets

clPi(x̄), i = 1, . . . , n, Sj , j = 1, . . . , m, W

is SNC at the corresponding points. Then the following hold:
(i) There is a positive marginal price p∗ ∈ E∗ \ {0} satisfying the pointbased relationships

(4.9)–(4.11) formalized via the basic normal cone.
(ii) There exist sequences of smooth nonlinear prices gk = (gk

1 , . . . , gk
n) and hk = (hk

1, . . . , h
k
m+1)

and sequences of suboptimal allocations

(xk, yk) ∈
n∏

i=1

clPi(x̄)×
m∏

j=1

clSj with wk :=
n∑

i=1

xk
i −

m∑

j=1

yk
j ∈ clW

such that (xk, yk, wk, gk, hk) forms a nonlinear price decentralized equilibrium, which arbitrarily
closely approximates the (positive) marginal price equilibrium (x̄, ȳ, w̄, p∗) in the sense of Theo-
rem 4.3, with the additional specifications of the nonlinear prices listed therein.

Proof. To establish the marginal price relationships in assertion (i), we pass to the limit in those
from assertion (i) of Theorem 5.2 as ε ↓ 0. The positivity of the limiting marginal price p∗ follows
from (4.9)–(4.11) under either one of the conditions (5.4)–(5.6), as in the proof of Theorem 5.1.
Assertion (ii) about the limiting nonlinear price decentralized equilibrium is proved similarly to the
one in Theorem 4.3(ii). 4

A counterpart of assertion (i) of Theorem 5.3 was obtained by Khan [19] in terms of Ioffe’s
normal cone in general Banach spaces under substantially more restrictive assumptions. Note that
the latter cone appeared as another infinite-dimensional extension of our basic normal cone (3.3)
being generally larger (never smaller) than the basic normal cone (3.2), even in the Asplund space
setting. We refer the reader to the paper by Mordukhovich [26] and the book [29] for abstract
analogs of some results presented above that are formulated via axiomatically defined prenormal
and normal structures on arbitrary Banach spaces. Let us emphasize that such abstract analogs
concern only some (not all) results of the marginal price type and do not relate to nonlinear price
decentralized equilibria, where the usage of the basic normal cone seems to be crucial.

To conclude this paper, we mention the possibility of extending the methods and results of this
paper to welfare economic models with public goods. In contrast to the welfare economic model
studied above, economies with public goods involve two categories of commodities: private and
public. Mathematically this means that the commodity space E is represented as the product of
two Banach spaces E = X × Z, where X and Z are the space of private and public commodities,
respectively. Thus consumer variables xi ∈ X, i = 1, . . . , n, stand for private goods, while those of
zi ∈ Z, i = 1, . . . , n, correspond to public goods of commodities; yj ∈ Sj ⊂ E connote production
variables as above. Considering for simplicity the “markets clear” setting in (2.1) with the given
initial endowment of scare recourses ω ∈ X only for private goods, we write the market constraints
in the economy involving both private and public goods as follows:

n∑

i=1

(xi, zi)−
m∑

j=1

yj = (ω, 0). (5.8)
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Note that the market constraint condition (5.8) reflects the fact that there is no endowment of
public goods, which is the most crucial characteristic feature of public good economies.

The main changes for public good economies, in comparison with the above marginal price
results of this paper, are as follows presented only for the case of the exact/limiting conditions
from in Theorem 4.3: instead of the existence of a nonzero marginal price p∗ ∈ E∗ satisfying (4.9)
and (4.10), we have prices p∗ = (p∗x, p∗z) ∈ X∗ × Z∗ and p∗i ∈ Z∗ as i = 1, . . . , n with (p∗x, p∗i ) 6= 0
for at least one i ∈ {1, . . . , n} and such that

−(p∗x, p∗z) ∈ N(x̄i; cl Pi(x̄)), i = 1, . . . , n, (5.9)

(p∗x, p∗z) ∈ N(ȳj ; cl Sj), j = 1, . . . , m, and (5.10)

p∗z =
n∑

i=1

p∗i . (5.11)

Observe that, while conditions (5.9) and (5.10) are actually concretizations of those in (4.9) and
(4.10) for the product structure of the commodity space E = X×Z, the last one in (5.11) confirms
the fundamental conclusion for welfare economics with public goods that goes back to Samuelson
[33]: the marginal rates of transformation for public goods are equal to the sum of the individual
marginal rates of substitution at Pareto optimal allocations.
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[18] Jofré, A., Rockafellar, R. T. and Wets R. J-B.: A variational inequality scheme for determining an
economic equilibrium of classical or extended type, in F. Giannessi and A. Maugeri (ed.), Variational
Analysis and Applications, pp. 553–578, Springer, Berlin, 2005.

[19] Khan, M. A.: Ioffe’s normal cone and the foundations of welfare economics: The infinite dimensional
theory, J. Math. Anal. Appl. 161 (1991), 284–298.

[20] Khan, M. A.: The Mordukhovich normal cone and the foundations of welfare economics, J. Public
Economic Theory 1 (1999), 309–338.

[21] Kruger, A. Y. and Mordukhovich, B. S.: Extremal points and the Euler equation in nonsmooth opti-
mization, Dokl. Akad. Nauk BSSR 24 (1980), 684–687.

[22] Malcolm, G. G. and Mordukhovich, B. S.: Pareto optimality in nonconvex economies with infinite-
dimensional commodity spaces, J. Global Optim. 20 (2001), 323–346.

[23] Mas-Colell, A.: The price equilibrium existence problem in topological vector lattices, Econometrica 54
(1986), 1039–1053.

[24] Mordukhovich, B. S.: Maximum principle in problems of time optimal control with nonsmooth con-
straints, J. Appl. Math. Mech. 40 (1976), 960–969.

[25] Mordukhovich, B. S.: Metric approximations and necessary optimality conditions for general classes of
nonsmooth extremal problems, Soviet Math. Dokl. 22 (1980), 526–530.

[26] Mordukhovich, B. S.: Abstract extremal principle with applications to welfare economics J. Math. Anal.
Appl. 251 (2000), 187–216.

[27] Mordukhovich, B. S.: The extremal principle and its applications to optimization and economics, in: A.
Rubinov and B. Glover, (ed.), Optimization and Related Topics, Kluwer, Dordrecht, 2001, pp. 343–369.

[28] Mordukhovich, B. S.: Nonlinear prices in nonconvex economies with classical Pareto and strong Pareto
optimal allocations, Positivity 9 (2005), 541–568.

[29] Mordukhovich, B. S.: Variational Analysis and Generalized Differentiation, Vol. I: Basic Theory, Vol.
II: Applications, Springer, Berlin, 2006.

[30] Mordukhovich, B. S. and Shao, Y.: Nonsmooth sequential analysis in Asplund spaces, Trans. Amer.
Math. Soc. 348 (1996), 1235–1280.

[31] Phelps, R. R.: Convex Functions, Monotone Operators and Differentiability, 2nd edition, Springer,
Berlin, 1993.

[32] Rockafellar, R. T. and Wets, R. J.-B.: Variational Analysis, Springer, Berlin, 1998.

[33] Samuelson, P. A.: The pure theory of public expenditures, Review Econ. Stat. 36, 387–389.

[34] Zhu, Q. J.: Nonconvex separation theorem for multifunctions, subdifferential calculus and applications,
Set-Valued Anal. 12 (2004), 275–290.

16


