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1. Introduction

In first-order convex analysis, a central notion is that of “subgradient.” Associated with
any closed, proper, convex function f : IRn → IR is the set-valued mapping ∂f : IRn →→ IRn,
which gives for each x the subgradient set ∂f(x) =

{
v

∣∣ f(x′) ≥ f(x) + 〈v, x′ − x〉
}
. This

mapping is known to be maximal monotone and to determine f uniquely up to an additive
constant. Its effective domain dom ∂f , although not necessarily convex, has the same
relative interior and closure as dom f =

{
x

∣∣ f(x) <∞
}
.

For purposes of second-order convex analysis, both f and ∂f offer possibilities. On the
one hand, second-order approximations of f can be explored, but first-order approxima-
tions of ∂f also deserve consideration in accordance with the notion of second derivatives
being obtainable by differentiating first derivatives. A basic issue, however, is what should
be meant by “approximation.” That term should refer of course to some concept of near-
ness, but nearness in the traditional sense of locally uniform pointwise convergence of
functions isn’t appropriate when the functions can be discontinuous and take on ∞.

In this paper, we look at approximations of both f and ∂f . We start with the
reconciliation of some early results on Taylor-like expansions, which are based on uniform
convergence, and proceed to extensions in which the approximating expressions come from
directional derivatives that are merely one-sided and correspond to semi-differentiation.
Then we go on to approximations based instead on set convergence, applied graphically
and epi-graphically, in order to gain further insights and connections with duality. These
approximations, in terms of epi-derivatives and proto-derivatives, provide criteria for semi-
derivative expansions in particular.

A general reference for second-order nonsmooth analysis of possibly nonconvex func-
tions is the recent book [1], Chapter 13. Our aim here is to bring out special properties
relevant to that theory that hold under convexity. Some of these properties can be ex-
tracted from the broader picture, but others follow a separate track or, in taking advantage
of convexity, can rely on much simpler arguments. We also aim at using this setting to trace
the motivation for some of the ideas that have come to dominate second-order nonsmooth
analysis. Much of that motivation came from convexity, even though the convex analysis
book [2] developed no second-order theory at all, and indeed with only the exception of
Alexandrov’s theorem on quadratic expansions, little was known in that direction when
[2] was written.
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2. Second derivatives based on Taylor-like expansions

A well known theorem of Rademacher asserts that a locally Lipschitz continuous mapping
from an open subset O of IRn to IRd for some d ≥ 1 is differentiable almost everywhere.
This can be applied to convex functions because they are locally Lipschitz continuous on
sets where they are finite. In our context of a closed, proper, convex function f : IRn → IR

(which is adopted throughout this paper) we obtain the fact that at almost every point
x ∈ int dom f there is a first-order linear (i.e., affine) expansion

f(x+ w) = f(x) + 〈v, w〉+ o(|w|), (2.1)

where |w| denotes the Euclidean norm and o(t) is the notation for an error term such that
o(t)/t→ 0 as t→ 0.

The existence of the expansion (2.1) is the very definition of f being differentiable at
x and describes the circumstances in which the gradient ∇f(x) exists, this being the vector
v. Such points x thus form the set dom∇f , which lies within int dom f and differs from
it only by a negligible set.

Convexity allows us to go further than these generic first-order expansions. The
following theorem of Alexandrov [3] from 1939 stands as the primary classical fact in
second-order convex analysis. A corresponding geometric result in the language of convex
surfaces was obtained by Busemann and Feller [4] in 1936.

Theorem 2.1 (Alexandrov). At almost every point x ∈ int dom f there is a second-order

quadratic expansion in the form

f(x+ w) = f(x) + 〈v, w〉+ 1
2 〈Aw,w〉+ o(|w|2). (2.2)

In particular (2.2) implies (2.1) and ensures that v = ∇f(x), but the status of the
matrix A is less clear. The quadratic form 〈Aw,w〉 depends only on the symmetric part of
A, i.e. the matrix 1

2 (A+A∗) (with ∗ denoting transpose), so there’s no loss of generality in
taking A itself symmetric in (2.2). Whether the entries of A can be interpreted as second
partial derivatives of f is nevertheless not so easy to answer.

Ordinarily, any discussion of second partial derivatives of f with respect to the compo-
nents of x = (x1, . . . , xn) presupposes that the first partial derivatives (∂f/∂xj)(x1, . . . , xn)
exist locally. Here we can be sure of their existence almost everywhere in int dom f , namely
at the points x ∈ dom∇f , but not everywhere. We do everywhere have subgradients, i.e.,
the nonemptiness of ∂f(x), and we know from convex analysis [2; Theorem 25.1] that
∂f(x) reduces to a single vector v if and only if f is differentiable at x with ∇f(x) = v.
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A theorem of Mignot [5] from 1976 provides in this respect an interesting parallel to
Alexandrov’s theorem and also a challenge. Mignot’s result is valid for maximal monotone
mappings T : IRn →→ IRn in general, but we state it now only for T = ∂f . In doing so, we
use IB to denote the closed unit ball in IRn (with respect to the Euclidean norm).

Theorem 2.2 (Mignot). At almost every point x ∈ int dom ∂f there is a first-order linear

expansion in the form

∂f(x+ w) ⊂ v +Aw + o(|w|)IB. (2.3)

The inclusion in (2.3), along with the fact that ∂f(x+ w) 6= ∅ when w is sufficiently
small, implies that x ∈ dom∇f with v = ∇f(x) and allows us to think of (2.3) as defining
the differentiability of ∂f at x, even though ∂f is a generally set-valued mapping. The
matrix A is in this sense the Jacobian of ∂f at x. The approximation that is afforded
fits the usual notion of differentiability when restricted to the set of points where ∂f is
single-valued, i.e., to dom∇f .

Theorem 2.3. The points x ∈ int dom f at which the expansion (2.3) holds are the points

x ∈ dom∇f at which the expansion

∇f(x+ w) = ∇f(x) +Aw + o(|w|) (2.4)

holds with respect to
{
w

∣∣x + w ∈ dom∇f
}
, this being a neighborhood of w = 0 except

for the possible omission of a negligible set of points w 6= 0.

Proof. We get (2.4) from (2.3) simply by restricting to the points x+w where ∂f is single-
valued. For the converse derivation of (2.3) from (2.4), a characterization of ∂f in terms of
∇f comes into play. According to [2; Theorem 25.6], we have at any point x′ ∈ int dom f

that ∂f(x′) is the convex hull of the compact set ∇f(x′), consisting of all cluster points of
sequences {∇f(xν)}∞ν=1 at points xν ∈ dom∇f such that xν → x′. Through this we get
from (2.4), written in the form ∇f(x + w) ∈ ∇f(x) + Aw + o(|w|)IB, that the inclusion
∇f(x + w) ⊂ ∇f(x) + Aw + o(|w|)IB without any need for restricting x + w to dom∇f .
Since the right side of this inclusion is a convex set, it remains valid when the convex hull
is taken on the left, an operation which yields (2.3).

It’s natural in the presence of the expansion property of Theorem 2.3 to define ∇f
to be differentiable at x in the extended sense and f to be twice differentiable at x in the
extended sense. The entries of the matrix A in (2.4) can legitimately be regarded then as
the second partial derivatives of f at x, even though first partial derivatives might fail to
exist at a certain points x+ w near x. We’ll refer to A therefore as the Hessian of f at x
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and employ for it the notation

∇2f(x) =
[

∂2f

∂xi∂xj
(x1, . . . , xn)

]n,n

i,j=1

just as in the case of f being twice differentiable at x in the classical sense, where dom∇f
is fully a neighborhood of x. In such terms we obtain statements about second-order
differentiability, first from Theorem 2.3 and then from Theorem 2.2.

Corollary 2.4. The subgradient mapping ∂f is differentiable at a point x ∈ int dom f if

and only if the gradient mapping ∇f is differentiable at x in the extended sense, or in other

words, f is twice differentiable at x in the extended sense. The Hessian matrix ∇2f(x)
serves then as the Jacobian matrix for ∂f at x, with

∂f(x+ w) ⊂ ∇f(x) +∇2f(x)w + o(|w|)IB. (2.5)

Corollary 2.5. The function f is twice differentiable in the extended sense at almost

every point x ∈ int dom f , those points forming a subset of dom∇f .

Corollary 2.5, as a reincarnation of Theorem 2.2, is tantalizing in its similarity to
Theorem 2.1. In comparing Theorem 2.2 to Theorem 2.1, we observe that the open convex
sets int dom f and int dom ∂f are identical and that in both expansions we have v = ∇f(x).
Could the points x at which the two expansions exist likewise be the same, and could it
be true that the matrix A is the same in both cases, thus equaling the ∇2f(x)? A serious
hurdle is that we have no assurance in (2.3) and (2.4) of the matrix being symmetric.
Classical examples remind us that a twice differentiable function f not of class C2 can have
∂2f/∂xi∂xj 6= ∂2f/∂xj∂xi. How do we know that can’t happen even for convex f?

We’ll prove, though, that the conjecture is true. For this purpose we’ll have to look
more closely at difference quotients and their convergence, which will be instructive for
subsequent developments as well. To begin with, let’s recall that in writing the expansion
(2.1) in the equivalent form f(x + τw) = f(x) + τ〈v, w〉 + o(τ |w|) we can interpret it as
saying that, as τ ↘0 the difference quotient functions

∆τf(x) : w 7→ f(x+ τw)− f(x)
τ

(2.6)

converge uniformly on bounded subsets of IRn to the linear function w 7→ 〈v, w〉. Through
a similar notational maneuver, the expansion (2.2) in Alexandrov’s theorem can be inter-
preted as saying that, as τ ↘0, the second-order difference quotient functions

∆2
τf(x) : w 7→ f(x+ τw)− f(x)− τ〈v, w〉

1
2τ

2
, where v = ∇f(x), (2.7)
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converge uniformly on bounded subsets of IRn to the quadratic function w 7→ 〈Aw,w〉.
Also important in this context for their relationship with the expansion (2.3) in

Mignot’s theorem are the first-order difference quotient mappings

∆τ [∂f ](x) : w 7→ ∂f(x+ τw)− v

τ
, where v = ∇f(x). (2.8)

These are set-valued, so the issue of their behavior as τ ↘0 is a bit more subtle, but still
it comes down to uniform convergence, properly construed.

Proposition 2.6. The expansion (2.3) holds at x if and only if, for every bounded set

W ⊂ IRn and every ε > 0, there exists δ > 0 such that

∅ 6= ∆τ [∂f ](x)(w)−Aw ⊂ εIB for all w ∈W when τ ∈ (0, δ). (2.9)

Proof. This is no more than a careful restatement of (2.3) with w replaced by τw, making
explicit the fact that, since x ∈ int dom ∂f , we have ∂f(x+ τw) 6= for all w ∈ W when τ

is sufficiently small.

Without the nonemptiness on the left in (2.9), it wouldn’t be right to speak of uniform
convergence being expressed by the expansion in (2.3).

Proposition 2.7. For any τ > 0, the function ∆2
τf(x) : IRn → IR is closed, proper and

convex and nonnegative, while the mapping ∆τ [∂f ](x) : IRn →→ IRn is maximal monotone.

Moreover

∂[ 12∆2
τf(x)] = ∆τ [∂f ](x). (2.10)

Proof. Let ϕτ = 1
2∆2

τf(x). We have ϕτ (w) ≥ 0 by virtue of the convexity inequality
f(x+τw) ≥ f(x)+τ〈v, w〉, since v = ∇f(x). Also, we can write ϕτ (w) = τ−1[fτ (w)−〈v, w〉]
for fτ (w) = τ−1[f(x + τw) − f(x)]. It’s obvious that fτ is again closed, proper and
convex, with ∂fτ (w) = ∂f(x+ τw) and consequently that ϕτ is closed, proper and convex
with ∂ϕτ (w) = τ−1[∂f(x + τw) − v] = ∆τ [∂f ](x)(w). As the subgradient mapping ∂ϕτ ,
∆τ [∂f ](x) is maximal monotone. (The latter also follows from that property of ∂f itself
and the defining formula for ∆τ [∂f ](x).)

The difference quotient relationship in Proposition 2.7 provides the bridge we are
seeking between Theorems 2.1 and 2.2.

Theorem 2.8. The points x for which the expansion (2.2) holds in Alexandrov’s theorem

are the same as the ones for which the expansion (2.3) holds in Mignot’s theorem. Moreover
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the matrix A in (2.3) is always symmetric when it exists and can be identified with the

symmetric matrix A in (2.2). In addition, this matrix is positive semidefinite.

Proof. Suppose first that the expansion (2.2) holds with A symmetric, and let ϕ(w) =
1
2 〈Aw,w〉, so that ϕ is differentiable with ∇ϕ(w) = Aw. As already observed, (2.2) means
that the functions ϕτ = 1

2∆2
τf(x), which by Proposition 2.7 are convex, converge pointwise

to ϕ as τ ↘0 and do so uniformly on bounded sets. Convexity is preserved under pointwise
convergence, so ϕ must be convex as well; hence A is positive semidefinite.

Uniform convergence of convex functions entails a kind of uniform convergence of their
subgradient mappings; on the basis of [2; Theorem 24.5], one has for every bounded set
W ⊂ IRn and every ε > 0 the existence of δ > 0 such that

∂ϕτ (w) ⊂ ∂ϕ(w) + εIB when τ ∈ (0, δ), w ∈W,

where in addition δ can be chosen small enough that ∂ϕτ (w) 6= 0 in these circumstances.
Since ∂ϕτ (w) = ∆τ [∂f ](w) by Proposition 2.7, whereas ∂ϕ(w) reduces to Aw, we see we
have the property set forth in Proposition 2.6 as describing the expansion (2.3). Thus,
(2.2) implies (2.3) with the same symmetric matrix A.

To establish the converse implication, suppose now that the expansion (2.3) holds.
Fix any ρ > 0 and any ε > 0. We wish to demonstrate the existence of δ > 0 such that∣∣∆2

τf(x)(w)− 〈Aw,w〉
∣∣ ≤ ε when τ ∈ (0, δ), |w| ≤ ρ, (2.11)

in order to confirm that, as δ↘0, the functions ∆2
τf(x) converge , uniformly on all bounded

sets to the function w 7→ 〈Aw,w〉.
By applying Proposition 2.6 to W = ρIB and ε′ = ε/ρ and restricting ∂f to dom∇f ,

we get the existence of δ > 0 such that

|∇f(x+ τw)− v − τAw| ≤ τε/ρ

when τ ∈ (0, δ), |w| ≤ ρ, x+ τw ∈ dom∇f,
(2.12)

where v = ∇f(x). We can take δ small enough that x + δρIB ⊂ int dom f . Then f is
Lipschitz continuous on x + δρIB, almost all points of which must belong to dom∇f . It
follows through Fubini’s theorem that, for all most every w on the boundary of ρIB (with
respect to surface measure) the line segment from x to x+ δw must have almost all of its
points in dom∇f (with respect to linear measure). Hence for almost every w ∈ ρIB, say
w ∈ D, f is differentiable at x+ tw for almost all t ∈ [0, δ]. For such w ∈ D the function
ψw : t 7→ f(x + tw) − f(x) − t〈v, w〉 − 1

2 t
2〈Aw,w〉 is Lipschitz continuous on [0, δ] with
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ψ′w(t) = 〈∇f(x + tw) − v − tAw,w〉 a.e. in t. That implies for w ∈ D and τ ∈ (0, δ) that
ψw(τ) = ψw(0) +

∫ τ

0
ψ′w(t)dt, where ψw(0) = 0, and therefore that |ψw(τ)| ≤

∫ τ

0
|ψ′w(t)|dt.

The estimate in (2.12) turns this into∣∣f(x+ τw)− f(x)− τ〈v, w〉 − 1
2τ

2〈Aw,w〉
∣∣

≤
∫ τ

0

∣∣〈∇f(x+ tw)− v − tAw,w〉
∣∣dt ≤ ∫ τ

0

τεdτ = 1
2τ

2ε,

which on dividing by 1
2τ

2 becomes
∣∣∆2

τf(x)(w) − 〈Aw,w〉
∣∣ ≤ ε. We have demonstrated

that, when τ ∈ (0, δ), this inequality holds for all w in a dense subset D of ρIB. It then
holds for all w ∈ ρIB by continuity. Thus, (2.11) has been verified, and the functions
∆2

τf(x) converge as claimed. This convergence means that the expansion (2.2) holds.

The version of the expansion (2.2) that we’ve arrived at uses the matrix A from (2.3),
yet it only depends on the symmetric part As of A. Our earlier argument told us, though,
that if (2.2) holds for As, then (2.3) holds for As. We thus have (2.2) for both A and As.
Invoking Theorem 2.3, we find that [A−As]w = o(|w|), but that requires A−As = 0. In
other words, A has to have been symmetric and positive semidefinite.

Corollary 2.9. The matrix∇2f(x), whenever it exists through f being twice differentiable

in the extended sense, is symmetric and positive semidefinite and furnishes the second-order

expansion

f(x+ w) = f(x) + 〈∇f(x), w〉+ 1
2 〈∇2f(x)w,w〉+ o(|w|2). (2.13)

3. Generalized expansions based on semi-differentiation

Through Theorem 2.8 and Corollary 2.9 we have a complete and satisfying picture of
Taylor-like expansions of finite convex functions on open sets. In first-order convex analysis,
however, we know how to get a generalized expansion generalized first-order expansion,
not just Taylor-like, in terms of one-sided directional derivatives even at points where f
isn’t differentiable. At every x ∈ int dom f the limit

lim
w′→w
τ ↘ 0

f(x+ τw′)− f(x)
τ

= lim
w′→w
τ ↘ 0

∆τf(x)(w′) (3.1)

exists finitely for every vector w. In denoting it by df(x)(w) we get

f(x+ w) = f(x) + df(x)(w) + o(|w|). (3.2)

Indeed, the limit in (3.1) exists finitely for every w if and only if the difference quotient
functions ∆τf(x) converge uniformly on bounded subsets of IRn to a function that’s finite
and continuous; cf. [1; 7.21].
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The expansion property in (3.2) is termed the semi-differentiability of f at x, with
df(x) the corresponding semi-derivative function. It reduces to differentiability exactly
when df(x) is a linear function, or in other words when x ∈ dom∇f , in which case
df(x)(w) = 〈∇f(x), w〉. For points x ∈ int dom f that don’t belong to dom∇f , although
df(x) isn’t linear, it’s at least sublinear , i.e., convex and positively homogeneous. Specifi-
cally, df(x) is the support function of the nonempty, compact, convex set ∂f(x):

df(x)(w) = sup
{
〈v, w〉

∣∣ v ∈ ∂f(x)
}
.

Are there analogs of the generalized first-order expansion (3.2) at the second-order
level in convex analysis? Let’s extend the definition of the second-order difference quotient
∆2

τf(x)(w) in (2.7) by substituting df(x)(w) for 〈v, w〉 there, so as to allow x to be any
point in int dom f , not necessarily in dom∇f . The question is whether at such a point x
the limit

lim
w′→w
τ ↘ 0

f(x+ τw′)− f(x)− df(x)(w′)
1
2τ

2
= lim

w′→w
τ ↘ 0

∆2
τf(x)(w′) (3.3)

exists finitely for every vector w, or equivalently (in our context of IRn) whether, as τ ↘0,
the functions ∆2

τf(x) converge uniformly on bounded sets to some finite, continuous func-
tion. If that’s true, then in denoting the limit by d2f(x)(w) we get

f(x+ w) = f(x) + df(x)(w) + 1
2d

2f(x)(w) + o(|w|2). (3.4)

We speak then of second-order semi-differentiability of f at x, with d2f(x) being the second
semi-derivative function. That’s certainly present at points x where f is twice differentiable
in the extended sense analyzed above, with d2f(x)(w) = 〈∇2f(x)w,w〉. We would like to
understand how far it might hold elsewhere in int dom f as well.

A comment about our notation should be made before proceeding, so as not to create
a discrepancy with the notation used in [1] without assumptions of convexity. For any
function f , df(x)(w) refers there to the value given by the “lim inf” in (3.1). The associ-
ated “lim sup” comes out then as −d[−f ](x)(w), so the property of semi-differentiability
corresponds to having −d[−f ](x)(w) = df(x)(w) for all w. This equation necessitates the
finiteness of the expressions and their continuity with respect to w, but in general they
wouldn’t be sublinear in w, just positively homogeneous. Similar conventions govern (3.3).
The notation d2f(x)(w) refers in [1] to the “lim inf” in (3.3). One says that f is twice semi-
differentiable at x if f is (once) semi-differentiable at x and the “lim inf” is a “lim”, i.e.,
the equation −d2[−f ](x)(w) = d2f(x)(w) holds for all w. Here we’re taking advantage of
the fact that, when f is convex and x ∈ int dom f , first-order semi-differentiability prevails
and can be taken for granted when contemplating second-order semi-differentiability.
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A shortcoming of second-order semi-differentiability in the study of a convex function
f is that the difference quotients in (3.3) can fail to be convex with respect to w, unless
df(x)(w) is actually linear in w. The notion can thereby escape the realm of convex
analysis. On the other hand, unless df(x)(w) is linear in w, the ability of f to be twice
semi-differentiable at x is much more limited than might be hoped. For instance, a function
that’s the pointwise maximum of a finite collection of quadratic functions can fail to be
twice semi-differentiable at points where the quadratics join together; see [1; 13.10].

In the next section we’ll look at a more robust concept than second-order semi-
differentiability which gets around these difficulties and even allows treatment of f at
boundary points of dom f . For now, we’ll concentrate on what can be said about second-
order semi-differentiability at points x with linear df(x), where the difference quotients are
of the original form in (2.7).

Proposition 3.1. At any point x ∈ dom∇f where f is twice semi-differentiable, the

function d2f(x) is (finite) convex, nonnegative and positively homogeneous of degree two.

Proof. The functions ∆2
τf(x) for τ > 0 are convex and nonnegative by Proposition

2.7, and these properties are preserved when they converge pointwise to another func-
tion, namely d2f(x). It’s easy to see from the formula in (2.7) that, for λ > 0, one has
∆2

τf(x)(λw) = λ2∆2
λτf(x)(w). In the limit, this gives d2f(x)(λw) = λ2d2f(x)(w), which

is positive homogeneity of degree two.

Corollary 3.2. At any point x ∈ dom∇f where f is twice semi-differentiable, there is a

closed convex set C with 0 ∈ intC such that

d2f(x) = γ2
C for the gauge γC . (3.5)

Proof. A convex function is nonnegative and positively homogeneous of degree two if and
only if its square root is nonnegative and positively homogeneous of degree one. The closed
convex functions of the latter sort are the gauges γC of the closed convex sets C containing
0; cf. [1; 3.50]. Finiteness of γC corresponds to 0 being an interior point of C.

When f is twice differentiable at x in the extended sense, not merely twice semi-
differentiable there, the set C in Corollary 3.2 comes out as the (possibly degenerate)
ellipsoid

{
w

∣∣ 〈∇2f(x)w,w〉 ≤ 1
}
. In the broader setting it corresponds to a kind of second-

order subdifferential which has been studied by Hiriart-Urruty [6], [7]. In contrast to other
second-derivative concepts, this one has no known extension to nonconvex functions.

Our aim now will be to develop a counterpart to Theorem 2.8, and for that we need
an extension of semi-differentiability to ∂f . We’ll say that ∂f is semi-differentiable at a
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point x ∈ dom∇f if the limit

lim
w′→w
τ ↘ 0

∂f(x+ τw′)− v

τ
= lim

w′→w
τ ↘ 0

∆τ [∂f ](x)(w′), where v = ∇f(x), (3.6)

exists nonemptily for every w. We’re dealing here with a limit in set convergence, inasmuch
as ∂f(x+ τw′) and ∆τ [∂f ](x)(w′) generally denote subsets of IRn (ones which happen to
be closed and convex). Further explanation may therefore be helpful.

Recall that a sequence of closed sets Cν ⊂ IRn converges to a closed set C ⊂ IRn as
ν → ∞ if and only if d(z, Cν) → d(z, C) for every z ∈ IRn, where d(z, C) denotes the
distance of z from C. Such convergence can be characterized in many different ways, as
laid out in Chapter 4 of [1]. In broader terms, the outer limit set lim supν C

ν consists
of the points z such that lim infν d(z, Cν) = 0, whereas the inner limit set lim infν C

ν

consists of the points z such that lim supν d(z, Cν) = 0. To say that Cν → C is to say
that lim supν C

ν = C = lim infν C
ν .

In general, the set defined by “lim sup” in (3.6) in place of “lim” is denoted in [1]
by D[∂f ](x)(w), and the mapping D[∂f ](x) : IRn →→ IRn that is so defined is called the
graphical derivative of ∂f at x. In speaking of semi-differentiability of f at x, we are
requiring this mapping to be nonempty-valued and to agree with the mapping obtained
from “lim inf.”

Actually, semi-differentiability of ∂f is a bit too strong a property for our purpose of
coordinating with second-order semi-differentiability of f . What we’ll need is the notion
of ∂f being almost semi-differentiable at a point x ∈ dom∇f in the sense that the limit in
(3.6) exists nonemptily for almost every w. The extent to which this can be interpreted
as producing an expansion of ∂f at x is as follows.

Proposition 3.3. For ∂f to be almost semi-differentiable at a point x ∈ dom∇f , it is

necessary and sufficient that the graphical derivative mapping D[∂f ](x) be monotone with

D[∂f ](x)(0) containing no more than 0. Then D[∂f ](x) is maximal monotone, locally

bounded everywhere, and single-valued almost everywhere, and

∂f(x+ w) ⊂ v +D[∂f ](x)(w) + o(|w|)IB, where v = ∇f(x). (3.7)

Proof. From the general definition of D[∂f ](x)(w) as the outer limit of the expres-
sions in (3.6), D[∂f ](x) can be identified with the (set-valued) mapping whose graph
consists of all pairs (w, z) such that for some sequence τν ↘0 there exist (wν , zν) with
zν ∈ ∆τν [∂f ](x)(wν) and (wν , zν) → (w, z). In other words, the graph of D[∂f ](x) is
the outer limit of the graphs of the mappings ∆τ [∂f ](x) as τ ↘0. Hence by the theory

10



of set convergence it’s the union of all limits of sequences of sets Cν = gph∆τν [∂f ](x)
that converge as τν ↘0; cf. [1; 4.19]. The mappings ∆τ [∂f ](x) are maximal monotone by
Proposition 2.7, and it’s known that if a sequence of graphs of maximal monotone map-
pings converges, the limit has to be the graph of another maximal monotone mapping; see
[1; 12.32]. Thus,

gphD[∂f ](x) =
⋃ {

gphT
∣∣T ∈ T

}
with T the collection of all maximal monotone mappings having graph obtainable as the
limit of gph∆τν [∂f ](x) for some sequence τν ↘0.

When ∂f is almost semi-differentiable at x, the mappings T ∈ T must have the same
nonempty value at almost every w. In particular they must have domT = IRn (since the
domain of a maximal monotone mapping is almost convex, so that its interior is the interior
of its closure; cf. [1; 12.41]). But a maximal monotone mapping is single-valued almost
everywhere on the interior of its domain and is completely determined by its restriction
to the points where it is single-valued; cf. [1; 12.66, 12.67]. Hence there can only be one
T ∈ T , namely D[∂f ](x), which therefore is maximal monotone. Any maximal monotone
mapping which, like D[∂f ](x), has all of IRn as its domain, is locally bounded everywhere
(cf. [1; 12.28]) as well as single-valued almost everywhere, as already noted.

Because D[∂f ](x) is a positively homogeneous mapping by its definition, D[∂f ](x)(0)
is always a cone. Local boundedness makes this cone reduce to {0}. The inclusion in (3.7)
follows simply on the basis of D[∂f ](x) being locally bounded; cf. [1; 12.40].

On the other hand, if D[∂f ](x) is monotone, the maximality of the monotone map-
pings T ∈ T again implies that D[∂f ](x) must be the sole element of T . The graphs of
the maximal monotone mappings ∆τ [∂f ](x) therefore converge to the graph of D[∂f ](x)
as τ ↘0. If in addition D[∂f ](x)(0) = {0}, the origin must be an interior point of
domD[∂f ](x), because maximal monotone mappings can’t have nonempty bounded val-
ues except on the interiors of their domains [1; 12.38]. Since D[∂f ](x) is positively
homogeneous, this implies domD[∂f ](x) = IRn. The convergence of gph∆τ [∂f ](x) to
gphD[∂f ](x) as τ ↘0 implies then that, at all points w where D[∂f ](x)(w) is a singleton,
one has ∆τ [∂f ](x)(w′) → D[∂f ](x)(w) as w′ → w and τ ↘0; this invokes a general fact
about convergence of maximal monotone mappings in [1; 12.40]. We thus have ∂f almost
semi-differentiable at x.

Proposition 3.4. If, for some x ∈ dom∇f , the mapping D[∂f ](x) is single-valued every-

where, then in particular ∂f is semi-differentiable at x.

Proof. By the same line of reasoning as for Proposition 3.3, there can only one T ∈ T ,
so D[∂f ](x) is that T and is monotone. The single-valuedness of D[∂f ](x) ensures that

11



D[∂f ](x)(0) = {0}. Then ∂f is almost semi-differentiable at x by Proposition 3.3, and
in fact, as seen toward the end of the proof of that result, one has by [1; 12.40] that
∆τ [∂f ](x)(w′) → D[∂f ](x)(w) as w′ → w and τ ↘0, as long as w is such that D[∂f ](x)(w)
is a singleton. Here we’re assuming that’s true for all w, so we get the convergence for all
w and thus have semi-differentiability.

Theorem 3.5. For x ∈ dom∇f , one has f twice semidifferentiable at x if and only if ∂f

is almost semi-differentiable at x. Then

∂[ 12d
2f(x)] = D[∂f ](x). (3.8)

Proof. The argument parallels the proof of Theorem 2.8 but depends on Proposition 3.3.
We begin by assuming that f is twice semi-differentiable at x and letting ϕ = 1

2d
2f(x) and

ϕτ = 1
2∆2

τf(x). By Proposition 3.1, ϕ is a finite convex function, positively homogeneous
of degree two, so that ∂ϕ is a maximal monotone mapping that’s positively homogeneous of
degree one, nonempty-valued and locally bounded everywhere. In particular, ∂ϕ(0) = {0}.
By Proposition 2.7, on the other hand, each ϕτ is a closed, proper, convex function with
∂ϕτ = ∆τ [∂f ](x). Our assumption means that, as τ ↘0, ϕτ converges to ϕ uniformly on
all bounded sets. That implies through [2; Theorem 24.5] the existence, for every bounded
set W ⊂ IRn and ε > 0, of δ > 0 such that ∂ϕτ (w) ⊂ ϕ(w) for all w ∈W when τ ∈ (0, τ),
or in other words,

∆τ [∂f ](x)(w) ⊂ ∂ϕ(w) + εIB when τ ∈ (0, δ), w ∈W.

The graph of D[∂f ](x) must therefore be contained within the graph of ∂ϕ, so D[∂f ](x)
must be monotone. Then by Proposition 3.3, ∂f is almost semi-differentiable at x and
D[∂f ](x) is maximal monotone. Because gphD[∂f ](x) ⊂ gph ∂ϕ and ∂ϕ is maximal
monotone, we have to have D[∂f ](x) = ∂ϕ, i.e., (3.8).

To argue in the other direction, we assume now that ∂f is almost semi-differentiable at
x, in which case the characterization in Proposition 3.3 is available. Consider any ε > 0 and
ρ > 0. The expansion (3.7) can be written as ∂f(x+ τw) ⊂ v+D[∂f ](x)(τw) + o(τ |w|)IB
where τ > 0 and D[∂f ](x)(τw) = τD[∂f ](x)(w), and it accordingly yields the existence of
δ > 0 such that

∆τ [∂f ](x)(w) ⊂ D[∂f ](x)(w) + (ε/ρ)IB when τ ∈ (0, δ), |w| ≤ ρ. (3.9)

Let E be the set of w where D[∂f ](x) is single-valued, and let F be the single-valued
mapping obtained by restricting D[∂f ](x) to E. From (3.9) we have

|∇f(x+ τw)− v − τF (w)| ≤ τε/ρ

when τ ∈ (0, δ), |w| ≤ ρ, w ∈ E, x+ τw ∈ dom∇f.
(3.10)
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We can suppose δ to be small enough that x + δρIB ⊂ int dom f . Then, as explained
in the proof of Theorem 2.8, there’s a subset D of full measure in ρIB such that, when
w ∈ D, f is differentiable at x + tw for almost all t ∈ [0, δ]. For such w the function
ψw : t 7→ f(x + tw) − f(x) − t〈v, w〉 − 1

2 t
2〈F (w), w〉 is Lipschitz continuous on [0, δ] with

ψ′w(t) = 〈∇f(x + tw) − v − tF (w), w〉 a.e. in t. Because ψw(0) = 0, we have |ψw(τ)| ≤∫ τ

0
|ψ′w(t)|dt which, as long as w belongs also to E, gives us through (3.10) the estimate∣∣f(x+ τw)− f(x)− τ〈v, w〉 − 1

2τ
2〈F (w), w〉

∣∣
≤

∫ τ

0

∣∣〈∇f(x+ tw)− v − tF (w), w〉
∣∣dt ≤ ∫ τ

0

τεdτ = 1
2τ

2ε.

On dividing this by 1
2τ

2, we get
∣∣∆2

τf(x)(w)−〈F (w), w〉
∣∣ ≤ ε. We have thus demonstrated

the existence, for any ε > 0 and ρ > 0, of δ > 0 such that

∣∣∆2
τf(x)(w)− 〈F (w), w〉

∣∣ ≤ ε when τ ∈ (0, δ), w ∈ D ∩ E,

with D ∩ E being a set of full measure in ρIB, hence dense in ρIB.

It follows that, as τ ↘0, the functions ∆2
τf(x) converge pointwise on D ∩ E to a

finite function, namely w 7→ 〈F (w), w〉. When convex functions converge pointwise to a
finite value at all points of a dense subset of an open convex set O, they converge finitely
everywhere on O and do so uniformly on compact subsets of O; cf. [2; Theorem 10.8].
Hence the functions ∆2

τf(x) converge uniformly on compact subsets of int ρIB to a certain
finite function, which is convex and consequently continuous. We have shown this for
arbitrary ρ > 0 and can conclude therefore that f is twice semi-differentiable at x.

The proof of Theorem 3.5 indicates that, on the set of vectors w where D[∂f ](x)(w)
reduces to a single value F (w), one has d2f(x)(w) = 〈F (w), w〉. This is analogous to
the case of f being twice differentiable at x in the extended sense, where d2f(x)(w) =
〈∇2f(x)w,w〉. The general rule is the following.

Corollary 3.6. At any x ∈ dom∇f where f is twice semi-differentiable, one has

d2f(x)(w) = 〈z, w〉 for every z ∈ D[∇f ](x)(w). (3.12)

Proof. The formula for d2f(x) in Corollary 3.2 gives us ∂[ 12d2f(x)](w) = γC(w)∂γC(w).
Thus by (3.8), each z ∈ D[∂f ](x)(w) has the form z = γC(w)u for some u ∈ ∂γC(w). Here
〈u,w〉 = γC(w) by the positive homogeneity of γC , so 〈z, w〉 = γC(w)2 = d2f(x)(w).
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4. Second derivatives based on variational convergence

While Theorem 3.5 provides an equivalence and other insights, it offers no criterion for
ascertaining whether the semi-differentiability in question is present. All we know is that
f is twice semi-differentiable at almost every point x ∈ dom∇f , inasmuch as that property
includes the cases where f twice differentiable in the extended sense, which are covered
by Corollary 2.5. Another limitation of the ideas discussed so far is that they apply to
a convex function f only at interior points of dom f , and even then, only with vigor at
points of dom∇f . Some of the biggest successes of first-order convex analysis have come
through the treatment of directional derivatives and subgradients at boundary points of
dom f and of course in allowing fully for the set-valuedness of ∂f .

The source of these limitations is fundamentally in the reliance on uniform conver-
gence of difference quotients. To progress further, we have to replace such convergence by
something else, and the natural candidate is variational convergence, i.e., epi-convergence
of extended-real-valued functions along with graphical convergence of set-valued mappings.
Both are based on set convergence, but in application to epigraphs and graphs.

A sequence of functions ϕν : IRn →→ IR is said to epi-converge to another such function
ϕ if their epigraphs epiϕν converge to epiϕ as subsets of IRn× IR. The topic is developed
at length in Chapter 7 of [1]. A sequence of set-valued mappings T ν : IRn →→ IRn is said to
converge graphically to another such mapping T if their graphs gphT ν converge to gphT
as subsets of IRn × IRn. We’ve already been using this notion, although not by name. It
had a major role in the proof of Proposition 3.3, in particular. Details about graphical
convergence can be found in Chapter 5 of [1].

In convex analysis, there’s a key fact that relates these two kinds of convergence. It
was proved by Attouch [8] in 1977 and says that a sequence of closed, proper, convex
functions ϕν epi-converges to such a function ϕ if and only if their subgradient mappings
∂ϕν converge graphically to ∂ϕ and (for the sake of fixing the constant of integration)
some pair (w, z) ∈ gph ∂ϕ can be approached by pairs (wν , zν) ∈ gph ∂ϕν in such a way
that ϕν(wν) → ϕ(w).

The possibility that Attouch’s theorem could be employed in connecting second deriva-
tives of f with first derivatives of ∂f was uncovered by Rockafellar [9] in 1985 in a special
case and eventually brought to bloom in [10]. Our goal here is to explain the main results
briefly and then to assess what they say about semi-differentiability.

Whereas previously we worked with difference quotients in (2.7) and (2.8) in which
the vector v was understood to be ∇f(x), we must now work with general subgradients
v ∈ ∂f(x). This has to be reflected in our notation. Accordingly we define the second-order
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difference quotient function

∆2
τf(x |v) : w 7→ f(x+ τw)− f(x)− τ〈v, w〉

1
2τ

2
, where v ∈ ∂f(x), (4.1)

and the first-order difference quotient mapping

∆τ [∂f ](x |v) : w 7→ ∂f(x+ τw)− v

τ
, where v ∈ ∂f(x). (4.2)

At a point x ∈ dom ∂f and for any v ∈ ∂f(x), we denote by d2f(x |v) the function with
epigraph obtained as the “lim sup” (outer limit) of the epigraphs of the functions ∆2

τf(x |v)
as τ ↘0 and say that f is twice epi-differentiable at x for v if actually this “lim sup” is a
“lim” and is proper, i.e., if ∆2

τf(x |v) in fact epi-converges as τ ↘0. Likewise, we denote
by D[∂f ](x |v) the mapping with graph obtained as the “lim sup” of the graphs of the
mappings ∆τ [∂f ](x |v) as τ ↘0 and say that ∂f is proto-differentiable at x for v if this
“lim sup” is a “lim,” i.e., if ∆τ [∂f ](x |v) converges graphically to D[∂f ](x |v) as τ ↘0.

These differentiation concepts based on variational convergence were introduced in
[11] and [12], respectively.

Theorem 4.1 [10]. Let x ∈ dom ∂f and v ∈ ∂f(x). Then f is twice epi-differentiable at

x for v if and only if ∂f is proto-differentiable at x for v, in which case

∂[ 12d
2f(x |v)] = D[∂f ](x |v), (4.3)

with d2f(x |v) being a closed, proper, convex function that is nonnegative and positively

homogeneous of degree two, and D[∂f ](x |v) being a maximal monotone mapping that is

positively homogeneous (of degree one).

Proof. Just as in Proposition 2.7, it’s elementary that for each τ > 0 the function
∆2

τf(x |v) : IRn → IR is closed, proper and convex and nonnegative, while the mapping
∆τ [∂f ](x |v) : IRn →→ IRn is maximal monotone, and

∂[ 12∆2
τf(x |v)] = ∆τ [∂f ](x |v). (4.4)

In addition, we have that ∆2
τf(x |v)(0) = 0 and ∆τ [∂f ](x |v)(0) = 0. To get the result,

all we have to do is apply Attouch’s theorem in the statement of it supplied above, with
(wν , zν) = (w, z) = (0, 0). (Because the functions ∆2

τf(x |v) are nonnegative and vanish
at the origin, there’s no risk of them epi-converging to a function that’s improper.)

An important feature of epi-convergence of convex functions is that it’s preserved
when passing to conjugate functions: if ϕν epi-converges to ϕ, then ϕν∗ epi-converges to
ϕ∗. This fact, proved by Wijsman [13] in 1964, is ideal for answering questions about what
happens to second derivatives when passing to conjugate functions. The next result comes
by that route in recalling that v ∈ ∂f(x) if and only if x ∈ ∂f∗(v).
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Theorem 4.2 [10]. One has f twice epi-differentiable at x for v if and only if f∗ is twice

epi-differentiable at v for x, in which case

[ 12d
2f(x |v)]∗ = 1

2d
2f∗(v |x). (4.5)

Proof. All that’s needed is to apply Theorem 4.2 to the functions ϕτ = 1
2∆2

τf(x |v) as
τ ↘0 while observing that ϕ∗τ = 1

2∆2
τf
∗(v |x).

What is the relationship between second-order epi-differentiation and second-order
semi-differentiation? This has a helpful answer.

Theorem 4.3. Let x ∈ dom∇f and v = ∇f(x). Then f is twice semi-differentiable at

x if and only if f is twice epi-differentiable at x for v and d2f(x |v)(w) is finite for all

w. The second-order semi-derivative function d2f(x) coincides then with the second-order

epi-derivative function d2f(x |v).

Proof. The crucial fact is that a sequence of convex functions ϕν epi-converges to a finite
convex function ϕ if and only it converges to ϕ uniformly on all bounded sets; cf. [1; 7.17].
By applying this to the convergence of second-order difference quotient functions, we get
the relationship claimed because second-order semi-differentiability corresponds to such
uniform convergence to a finite function that’s continuous, and finite convex functions are
automatically continuous.

Corollary 4.4. Let x ∈ dom∇f and v = ∇f(x). Then f is twice semi-differentiable at x

if and only if f∗ is twice epi-differentiable at v for x and d2f∗(v |x) is positive-definite in

the sense that

d2f∗(v |x)(z) > 0 for all z 6= 0. (4.6)

Proof. Combining the duality in Theorem 4.2 with the assertions of Theorem 4.3, we are
able to translate the second-order epi-differentiability of f to that of f∗ and the finiteness
of d2f(x |v) to the coercivity of d2f∗(v |x). Because d2f∗(v |x) is positively homogeneous
of degree two by Theorem 4.1, it’s coercive if and only if (4.6) holds.

Corollary 4.5. Let x ∈ dom∇f and v = ∇f(x). A necessary and sufficient condition for

∂f to be almost semi-differentiable at x is that ∂f be proto-differentiable at x for v with

D[∂f ](x |v)(0) containing only 0. Then D[∂f ](x) = D[∂f ](x |v).

Proof. This combines Theorem 4.3 with Proposition 3.3 and Theorem 3.5.

Further material on the relationship between Theorem 4.1 and “expansions” of f or
∂f is available in [14].
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These characterizations focus ever greater attention on the question of how to know
whether a function f or f∗ is twice epi-differentiable somewhere, and if so, what formulas
might be used to express the epi-derivatives. According to Theorem 4.3 and its corollaries,
information about that provides information also on semi-differentiability.

In fact a large class of functions, central to finite-dimensional optimization, has been
shown in [11] to be twice epi-differentiable, namely the “fully amenable” functions. The
results and formulas recently been explained also in [1], and there is no need for fur-
ther duplication of them here. Instead, we conclude with some observations about their
applications.

The tie between second-order epi-derivatives of f and proto-derivatives of ∂f in The-
orem 4.1 is particularly valuable for the study of perturbations of solutions to problems of
optimization. Typically those solutions are characterized in terms of subgradients, and in
looking at the way solutions depend on parameter vectors, one therefore ends up looking
at set-valued mappings derived from subgradient mappings. Proto-differentiability of a so-
lution mapping can then be deduced from proto-differentiability of a subgradient mapping.
The fact in Theorem 4.1 that the proto-derivatives D[∂f ](x |v)(w) are the subgradients
∂h(w) of h = 1

2d
2f(x |v) can in that case have the remarkable consequence that the proto-

derivatives of the solution mapping can be calculated by solving an auxiliary optimization
problem in which the original objective function has been replaced by one of its second-
order epi-derivative functions. Such developments can be found in [15] and [16] as well as,
to some extent, in [1].

Other recent developments on solution perturbations, in [17] and [18], utilize yet
another concept of generalized second derivative, namely the “coderivative Hessian” map-
ping introduced by Mordukhovich [19], [20]. A basic inclusion between the proto-derivative
mappings and coderivative mappings associated with ∂f has been established in [21].

The extent to which such developments, generally for nonconvex functions, might
lead to special results for convex functions, hasn’t really been explored. That’s the status
also of results on generalized second derivatives of parabolic type, taken along quadratic
curves rather than linear rays. Parabolic second derivatives of fully amenable functions
were demonstrated in [11] to obey a certain duality with second epi-derivatives. They have
been featured in some recent work on optimality; cf. [22].
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