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Abstract. A feasibility problem requests solution to the problem

Find x ∈
N⋂
i=1

Ci

where C1, C2, . . . CN are closed sets finitely many closed sets lying in a Hilbert space H.
We consider iterative methods based on the non-expansive properties of the metric

projection operator
PC(x) := argminc∈C‖x− c‖

or reflection operator RC := 2PC − I on a closed convex set C in Hilbert space. These
methods work best when the projection on each set Ci is easy to describe or approximate.

These methods are especially useful when the number of sets involved is large as the
methods are fairly easy to parallelize. The theory is pretty well understood when all sets
are convex. The theory is much less clear in the non-convex case. But as we shall see
application of this case has had may successes. So this is a fertile area for both pure and
applied study.

The five hours of lectures will cover the following topics.

1. Alternating projection methods : background theory, convergence and basic algo-
rithms ([6, 5, 17], [8] and [14, 13])

2. The Douglas Rachford reflection method and generalizations ([9, 1, 10, 11, 4], [15]
and [16])

3. Applications to convex problems and to non-convex combinatorial problems [2] and
to matrix completion problems [3]

4. Protein conformation determination: a detailed case study [3]

5. Relaxed reflection methods and norm convergence for realistic problems [12]

This is based on joint work with Matt Tam, Brailey Sims and Fran Aragon.
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